See picture for answer and solution steps.
Answer:
Part A) 
Part B) 
Part C) 
Step-by-step explanation:
Part A) we know that
In the right triangle ABC of the figure the sine of angle A is equal to divide the opposite side angle A by the hypotenuse
so

substitute the values

Part B) we know that
In the right triangle ABC of the figure the cosine of angle A is equal to divide the adjacent side angle A by the hypotenuse
so

substitute the values

Part C) we know that
In the right triangle ABC of the figure the tangent of angle A is equal to divide the opposite side angle A by the adjacent side angle A
so

substitute the values

Answer:
Angles 2 and 3 are supplementary to each other
Step-by-step explanation:
A supplementary angle is 2 angles that when you add the sum is 180.
Answer:
<em>255</em>
Step-by-step explanation:
(2+2+3+10) × (8+9+-9+7)
First, remove the brackets:
2 + 2 + 3 + 10 × 8 + 9 + -9 + 7
Now calculate like so:
2 + 2 + 3 + 10 = <em>17</em>
8 + 9 + -9 + 7 = <em>15</em>
<em>(</em><em>17</em><em>)</em><em> </em><em>×</em><em> </em><em>(</em><em>15</em><em>)</em><em> </em><em>=</em><em> </em><em>17</em><em> </em><em>×</em><em> </em><em>15</em><em> </em><em>=</em><em> </em><em>255</em>
<em>PLEASE</em><em> </em><em>DO</em><em> </em><em>MARK</em><em> </em><em>ME</em><em> </em><em>AS</em><em> </em><em>BRAINLIEST UWU</em><em> </em>
The correct answer is B.1