1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
3 years ago
6

HElp 64 points and Brainlyiest to who ever can solve the problem question on the picture

Mathematics
1 answer:
andrew11 [14]3 years ago
4 0

Answer:

Addition Property of Equality

Step-by-step explanation:

You are adding 3/4 to both sides to isolate the <em>x</em>.

You might be interested in
Is 8.92 bigger or 89.2
artcher [175]

Answer:

89.2 is bigger

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Solve the following differential equation using using characteristic equation using Laplace Transform i. ii y" +y sin 2t, y(0) 2
kifflom [539]

Answer:

The solution of the differential equation is y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

Step-by-step explanation:

The differential equation is given by: y" + y = Sin(2t)

<u>i) Using characteristic equation:</u>

The characteristic equation method assumes that y(t)=e^{rt}, where "r" is a constant.

We find the solution of the homogeneus differential equation:

y" + y = 0

y'=re^{rt}

y"=r^{2}e^{rt}

r^{2}e^{rt}+e^{rt}=0

(r^{2}+1)e^{rt}=0

As e^{rt} could never be zero, the term (r²+1) must be zero:

(r²+1)=0

r=±i

The solution of the homogeneus differential equation is:

y(t)_{h}=c_{1}e^{it}+c_{2}e^{-it}

Using Euler's formula:

y(t)_{h}=c_{1}[Sin(t)+iCos(t)]+c_{2}[Sin(t)-iCos(t)]

y(t)_{h}=(c_{1}+c_{2})Sin(t)+(c_{1}-c_{2})iCos(t)

y(t)_{h}=C_{1}Sin(t)+C_{2}Cos(t)

The particular solution of the differential equation is given by:

y(t)_{p}=ASin(2t)+BCos(2t)

y'(t)_{p}=2ACos(2t)-2BSin(2t)

y''(t)_{p}=-4ASin(2t)-4BCos(2t)

So we use these derivatives in the differential equation:

-4ASin(2t)-4BCos(2t)+ASin(2t)+BCos(2t)=Sin(2t)

-3ASin(2t)-3BCos(2t)=Sin(2t)

As there is not a term for Cos(2t), B is equal to 0.

So the value A=-1/3

The solution is the sum of the particular function and the homogeneous function:

y(t)= - \frac{1}{3} Sin(2t) + C_{1} Sin(t) + C_{2} Cos(t)

Using the initial conditions we can check that C1=5/3 and C2=2

<u>ii) Using Laplace Transform:</u>

To solve the differential equation we use the Laplace transformation in both members:

ℒ[y" + y]=ℒ[Sin(2t)]

ℒ[y"]+ℒ[y]=ℒ[Sin(2t)]  

By using the Table of Laplace Transform we get:

ℒ[y"]=s²·ℒ[y]-s·y(0)-y'(0)=s²·Y(s) -2s-1

ℒ[y]=Y(s)

ℒ[Sin(2t)]=\frac{2}{(s^{2}+4)}

We replace the previous data in the equation:

s²·Y(s) -2s-1+Y(s) =\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)-2s-1=\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)=\frac{2}{(s^{2}+4)}+2s+1=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)}

Y(s)=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)(s^{2}+1)}

Y(s)=\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}

Using partial franction method:

\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}=\frac{As+B}{s^{2}+4} +\frac{Cs+D}{s^{2}+1}

2s^{3}+s^{2}+8s+6=(As+B)(s²+1)+(Cs+D)(s²+4)

2s^{3}+s^{2}+8s+6=s³(A+C)+s²(B+D)+s(A+4C)+(B+4D)

We solve the equation system:

A+C=2

B+D=1

A+4C=8

B+4D=6

The solutions are:

A=0 ; B= -2/3 ; C=2 ; D=5/3

So,

Y(s)=\frac{-\frac{2}{3} }{s^{2}+4} +\frac{2s+\frac{5}{3} }{s^{2}+1}

Y(s)=-\frac{1}{3} \frac{2}{s^{2}+4} +2\frac{s }{s^{2}+1}+\frac{5}{3}\frac{1}{s^{2}+1}

By using the inverse of the Laplace transform:

ℒ⁻¹[Y(s)]=ℒ⁻¹[-\frac{1}{3} \frac{2}{s^{2}+4}]-ℒ⁻¹[2\frac{s }{s^{2}+1}]+ℒ⁻¹[\frac{5}{3}\frac{1}{s^{2}+1}]

y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

3 0
3 years ago
Which ratio is equivalent to 4:5?
maw [93]

Answer:

8:10 and 12: 15

Step-by-step explanation:

we have to multiply

5 0
3 years ago
How do i draw out that z is the mid point of FG
Minchanka [31]

Answer:

You put a dot in the middle of FG and call it z

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Write an equation in slope intercept form for the line with slope -4 and y-intercept -1
Jet001 [13]

The general form is y = mx + c

where m = slope and c is the y intercept

Here it is y = -4x - 1  (answer)

8 0
3 years ago
Other questions:
  • Solve each system by substitution <br> x^2 − 14x + 49 = 4?
    10·1 answer
  • Mark wants a new car that costs $30000. He only has $500 in his savings account and $300 in his checking account. Which financin
    15·1 answer
  • State the domain and the range of the graph of f(x) = 4
    13·1 answer
  • Please need help ASAP!!! Answer and I’ll name you brainliest.
    12·1 answer
  • 1. A clerk at the pet store kept track of the number of fish purchased by customers during one week. Mary bought 1 fish, Ari bou
    11·2 answers
  • Can you help me with this problem: Elena and Jada both read at a constant rate, but Elena reads more slowly. For every 4 pages t
    7·1 answer
  • 13501 rounded to nearest 10000
    12·2 answers
  • Help!!! (Brainlist!!!!!)
    14·2 answers
  • Adams Stationary sells cards in packs of 6 and envelops in packs of 9. If HyunSik wants the same number of each, what is the min
    8·1 answer
  • Fill in the blank with either "edge" or "vertex" to make a true statement.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!