L(1, -4)=(xL, yL)→xL=1, yL=-4
M(3, -2)=(xM, yM)→xM=3, yM=-2
Slope of side LM: m LM = (yM-yL) / (xM-xL)
m LM = ( -2 - (-4) ) / (3-1)
m LM = ( -2+4) / (2)
m LM = (2) / (2)
m LM = 1
The quadrilateral is the rectangle KLMN
The oposite sides are: LM with NK, and KL with NK
In a rectangle the opposite sides are parallel, and parallel lines have the same slope, then:
Slope of side LM = m LM = 1 = m NK = Slope of side NK
Slope of side NK = m NK = 1
Slope of side KL = m KL = m MN = Slope of side MN
The sides KL and LM (consecutive sides) are perpendicular (form an angle of 90°), then the product of their slopes is equal to -1:
(m KL) (m LM) = -1
Replacing m LM = 1
(m KL) (1) = -1
m KL = -1 = m MN
Answer:
Slope of side LM =1
Slope of side NK =1
Slope of side KL = -1
Slope of side MN = -1
Answer:
the answer is c
Step-by-step explanation:
-then+
Answer:
15 feet
Step-by-step explanation:
This problem involves using the Pythagorean theorem, since the figure made with the ladder, building, and ground would make a right triangle. You are given the values 17ft and 8ft, which is enough to plug into the Pythagorean theorem.
The ladder, 17ft, would be the longest side (hypotenuse). The 8ft building would be one of the legs of the right triangle.
1. Plug your given values correctly into the Pythagorean Theorem.


2. Now solve for b, which is your unknown distance (the distance the bottom of the ladder is from the bottom of the building).
--> Square 8 and 17
--> Subtract 64 from both sides
--> Square root both sides to get b by itself
b = 15
3. The distance is 15 feet
*Note: to make solving this problem easier, try drawing out the given situation, namely the building and the ladder
Answer:
Step-by-step explanation:
Give the rate of change of sales revenue of a store modeled by the equation
. The Total sales revenue function S(t) can be gotten by integrating the function given as shown;

a) The total sales for the first week after the campaign ends (t = 0 to t = 7) is expressed as shown;


Total sales = S(7) - S(0)
= 6,860 - 0
Total sales for the first week = $6,860
b) The total sales for the secondweek after the campaign ends (t = 7 to t = 14) is expressed as shown;
Total sales for the second week = S(14)-S(7)
Given S(7) = 6,860
To get S(14);

The total sales for the second week after campaign ends = 13,720 - 6,860
= $6,860