Triangle ABE is isosceles / Given
AB congruent to AE / Def isosceles
angle ABE congruent to angle AEB / Property of isosceles triangles
angle ABD congruent to angle AEC / Subst different name for same angles
BD congruent to EC / Given
triange ABD congruent to triange AEC / Side Angle Side
Answer:
r = 0.
Step-by-step explanation:
The slope = (y2 - y1) / (x2 - x1)
So (r - (-3)) / (-4-2) = -1/2
(r + 3) / -6 = -1/2
2(r + 3) = 6
2r + 6 = 6
2r = 6 - 6 = 0
r = 0 (answer).
Answer:
Algebra Examples
Popular Problems Algebra Find the Axis of Symmetry f(x)=x^2-5 f(x)=x2−5 Set the polynomial equal to y to find the properties of the parabola. y=x2−5
Rewrite the equation in vertex form.
y=(x+0)2−5 Use the vertex form, y=a(x−h)2+k, to determine the values of a, h, and k.a=1h=0k=−5
Since the value of a is positive, the parabola opens up.
Opens Up
Find the vertex
(h,k).(0,−5)
Find p, the distance from the vertex to the focus.
14 Find the focus.
(0,−194)
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0
Answer:
52°
Step-by-step explanation:
<em>here's</em><em> </em><em>your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>we </em><em>know</em><em> </em><em>that</em><em> </em><em>the </em><em>measure</em><em> </em><em>of</em><em> </em><em>angle</em><em> of</em><em> </em><em>rectangle</em><em> </em><em>is </em><em> </em><em>9</em><em>0</em><em>°</em>
<em>=</em><em>></em><em> </em><em> </em><em>3</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>X </em><em> </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em>
<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>3</em><em>8</em><em>°</em>
<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>hope</em><em> it</em><em> helps</em>
Multiply the numerators together. Multiply the denominators together. Then reduce if necessary.


