By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
If y varies directly with x, means that they can be modeled by a linear equation, lets choose a line with 0 y intercept, that is:
y = mx + b
y = mx
where m is the slope of the line, now we plug in the data we have:
y = mx
20/3 = m(30)
solving for m:
m = (20/3)(1/30)
m = 20/90
m = 2/9
so the line equation, or function modeling the y and x relationship is:
y = (2/9)x
The slope of the line is 1. the equation would be y=x-3
Assume that 3 digits are selected at random from the set {1,3,5,6,7,8} { 1 , 3 , 5 , 6 , 7 , 8 } and are arranged in random orde
Mumz [18]
Sample space is 36.so the probability must be 20/36.from three digits the maximum no.of number can be made is 6.