Answer:
Iodine
Explanation:
I hope this answer will help you
Answer:
A compound can easily be split up into its different elements.
Explanation:
Answer:
Explanation:
a ) period 4 noble gas is krypton
isoelectronic with it are Sr ⁺² and Br⁻
compound is SrBr₂
b ) Period 3 noble gas is Argon
isoelectronic with it are Mg⁺² and O⁻²
compound is MgO
c) 2+ ion is the smallest with a filled d subshell is Zn⁺² , smallest halogen
is F⁻
compound is ZnF₂
d ) ions from the largest and smallest ionizable atoms in Period 2
Li⁺ and F⁻
compound is LiF
Answer:
c. 29 J
Explanation:
Step 1: Given data
- Specific heat capacity of Pb (c): 0.13 J/g.K (= 0.13 J/g.°C)
- Initial temperature: 22 °C
Step 2: Calculate the temperature change
ΔT = 37 °C - 22 °C = 15 °C
Step 3: Calculate the heat (Q) required to raise the temperature of the lead piece
We will use the following expression.
Q = c × m × ΔT
Q = 0.13 J/g.°C × 15 g × 15 °C = 29 J
<u>Answer:</u> The
for HCN (g) in the reaction is 135.1 kJ/mol.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(HCN)})+(6\times \Delta H_f_{(H_2O)})]-[(2\times \Delta H_f_{(NH_3)})+(3\times \Delta H_f_{(O_2)})+(2\times \Delta H_f_{(CH_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-870.8=[(2\times \Delta H_f_{(HCN)})+(6\times (-241.8))]-[(2\times (-80.3))+(3\times (0))+(2\times (-74.6))]\\\\\Delta H_f_{(HCN)}=135.1kJ](https://tex.z-dn.net/?f=-870.8%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28-80.3%29%29%2B%283%5Ctimes%20%280%29%29%2B%282%5Ctimes%20%28-74.6%29%29%5D%5C%5C%5C%5C%5CDelta%20H_f_%7B%28HCN%29%7D%3D135.1kJ)
Hence, the
for HCN (g) in the reaction is 135.1 kJ/mol.