In order to answer this, you need to find the empirical data for the standard entropies. Please refer to this link: http://www.mrbigler.com/misc/energy-of-formation.PDF
For NO₂ gas, the entropy is 240 J/mol-K. For N₂O₄ gas, the entropy is 304.2 J/mol-K. Therefore, <em>the statement is false.</em>
Answer:
F = ma or Force = mass x acceleration.
Explanation:
Newtons second law is about the force put onto an object. To find this you would use the formula:
Force is equal to mass times acceleration (F=ma)
Answer:
A.
Explanation:
The <u>tertiary structure </u>of proteins is related to the interactions between the amino acids of the <u>primary structure</u>. Thus, these interactions give it a specific three-dimensional configuration which is very sensitive to <u>functionality</u>.
For example, <u>allosteric inhibitions</u> are related to this concept. When the <u>inhibitor</u> changes the tertiary structure of the protein it loses all <u>activity</u> and for the catalysis of the reaction.
Thus, the primary structure (which is related to the specific <u>sequence of amino acids</u>) will determine the tertiary structure since the chain folds will be a consequence of<u> intra-amino acid interactions</u>.
An electron with greater energy.
I hope this helps :)
Answer:
Rate constant = 0.0237 M-1 s-1, Order = Second order
Explanation:
In this problem, it can be observed that as the concentration decreases, the half life increases. This means the concentration of the reactant is inversely proportional to the half life.
The order of reaction that exhibit this relationship is the second order of reaction.
In the second order of reaction, the relationship between rate constant and half life is given as;
t1/2 = 1 / k[A]o
Where;
k = rate constant
[A]o = Initial concentration
k = 1 / t1/2 [A]
Uisng the following values;
k = ?
t1/2 = 113
[A]o = 0.372M
k = 1 / (113)(0.372)
k = 1 / 42.036 = 0.0237 M-1 s-1