Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3
The inequality is 7x + 21 
Step-by-step explanation:
<u>DATA:</u>
Let the number be x
Number times 7 = 7*x
Sum of a number times 7 and 21 = 7x + 21
Is at least 29
<u>INEQUALITY:</u>
7x + 21 
<u>SOLVE:</u>
7x
7x
x 
Therefore, the inequality is 7x + 21 
Keyword: Inequality
Learn more about inequality at
#LearnwithBrainly
The answer would be
3x² - x + 3
Given:
The fractions are:

To find:
The each fraction as the sum of a whole number and a fraction less than 1.
Solution:
The given fraction is
.



Therefore, the given fraction
can be written as
.
The given fraction is
.



Therefore, the given fraction
can be written as
.
The given fraction is
.



Therefore, the given fraction
can be written as
.
Just multiply 38 by 50.
1,900