Answer:
Sn2 mechanism reaction
Explanation:
In this case, we have a <u>primary substrate</u> (1-bromo-3,3-dimethylbutane). Because the <u>leaving grou</u>p "Br" is bonded to a <u>primary carbon</u>. Additionally, the nucleophile will come from the "NaI" (sodium iodide). This is an <u>ionic compound</u>, so, in solution, a cation and an anion would be produced. The anion
would be the <u>nucleophile</u>.
Due to the primary substrate, we will have an <u>Sn2 reaction</u>. So, the attack of the nucleophile and the removal of the leaving group will take place in <u>1 step</u>. Producing a <u>"transition state"</u> and finally and the final product (1-iodo-3,3-dimethylbutane).
See figure 1
I hope it helps!
There are 3 significant figures. Significant numbers are the numbers that build up your total number. 1-9 always count, 0 only counts if it’s after another number. For example: 0,901 has 3 significant numbers as does 0,910. 9,10 also has 3. 0,09 has just 1.
Answer:
the environmental benefits of rain water harvesting
Explanation:
rainwater harvesting can reduce stormwater runoff a property by reducing stormwater runoff rainwater harvesting can reduce is term peak flow volume and velocity in local cricket stream and rivers thereby reducing the potential for stream Bank erosion
Oxidation-Reduction Reactions Suggested Reading Thus the oxidation number for oxygen in calcium oxide is -2. ... In effect, each calcium atom loses two electrons to form Ca2+ ions, and each O atom in O2 gains two electrons to form O2- ions. The net result is a transfer of electrons from calcium to oxygen, so this reaction is an oxidation-reduction reaction.
+<u>O²</u><u>(</u><u>g</u><u>)</u><u>=</u><u>2</u><u>CaO</u><u>(</u><u>s</u><u>)</u>
Explanation:
we can conclude that in the reaction there is both reduction and oxidation.
Answer: There are
molecules present in 7.62 L of
at
and 722 torr.
Explanation:
Given : Volume = 7.62 L
Temperature = 
Pressure = 722 torr
1 torr = 0.00131579
Converting torr into atm as follows.

Therefore, using the ideal gas equation the number of moles are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

According to the mole concept, 1 mole of every substance contains
atoms. Hence, number of atoms or molecules present in 0.244 mol are calculated as follows.

Thus, we can conclude that there are
molecules present in 7.62 L of
at
and 722 torr.