Answer:
a
No
b
100 mm Hg
Explanation:
From the question we are told that
The vapor pressure of CHCl3, is 
The temperature of CHCl3 is 
The volume of the container is 
The temperature of the container is 
The mass of CHCl3 is m = 0.380 g
Generally the number of moles of CHCl3 present before evaporation started is mathematically represented as

Here M is the molar mass of CHCl3 with the value 
=> 
=>
Generally the number of moles of CHCl3 gas that evaporated is mathematically represented as

Here R is the gas constant with value 
So
Given that the number of moles of CHCl3 evaporated is less than the number of moles of CHCl3 initially present , then it mean s that not all the liquid evaporated
At equilibrium the temperature of CHCl3 will be equal to the pressure of air so the pressure at equilibrium is 100 mmHg
Let's identify first the phases of matter inside each of those beakers. The first beaker on the left has a compact shape and has its own volume. So, that must be solid. The middle beaker has a compact shape but it takes the shape of its container. So, that must be liquid. The third beaker on the right is gas because the molecules are far away from each other.
After identifying each states, let's investigate the energy for phase change. Let's start with the arrows pointing to the right. The first arrow to the right is a phase change from solid to liquid. The intermolecular forces in a solid is the strongest among the three phases of matter. So, you would need an input of energy to break them apart into liquid. The same is true for the phase change from liquid to gas. Therefore, all the arrows pointing to the right require an input of energy.
The reverse arrows pointing to the left needs to release energy. The molecules in the gas state are free such that they can travel from one point to another easily. They have the highest amount of energy. So, if you want the molecules to come closer together, you need to remove the energy to keep them in place. Therefore, the arrows pointing to the right require removal of energy.
It's the second one. Their body activity decreases, mostly because they're sleeping and they conserve the food in their bodies for long periods of time.
<span>the marmots' body activity decreases to conserve food stored in their bodies.</span>
Answer: sorry i dont knowExplanation: