Answer:
What is the question? I don't understand what you are trying to say.
Answer:
Pp O2 = 82.944 KPa
Explanation:
heliox tank:
∴ %wt He = 32%
∴ %wt O2 = 68%
∴ Pt = 395 KPa
⇒ Pp O2 = ?
assuming a mix of ideal gases at the temperature and volumen of the mix:
∴ Pi = RTni/V
∴ Pt = RTnt/V
⇒ Pi/Pt = ni/nt = Xi
⇒ Pi = (Xi)*(Pt)
∴ Xi: molar fraction (ni/nt)
⇒ 0.68 = mass O2/mass mix
assuming mass mix = 100 g
⇒ mass O2 = 68 g
∴ molar mass O2 = 32 g/mol
⇒ moles O2 = (68 g)(mol/32 g) = 2.125 mol O2
⇒ mass He = 32 g
∴ molar mass He = 4.0026 g/mol
⇒ moles He = (32 g)(mol/4.0026 g) = 7.995 mol He
⇒ nt = nO2 + nHe = 2.125 mol + 7.995 mol = 10.12 moles
molar fraction O2:
⇒ X O2 = nO2/nt = (2.125 mol/10.12 mol) = 0.2099
⇒ Pp O2 = (X O2)(Pt)
⇒ Pp O2 = (0.2099)(395 KPa)
⇒ Pp O2 = 82.944 KPa
Answer:
High melting point,High density,Nonreactive
Explanation:
The following are the Properties of transition elements:
They have large charge/radius ratio. They are harder and they have high densities;.They have high melting and boiling points.They form compounds which are paramagnetic. They show variable oxidation states. They form colored ions and compounds. Compounds are formed with profound catalytic activity. Stable complexes are formed by them.
When Comparing with the alkali metals present in group 1 and the alkaline Earth metals that are present in group 2, the transition metals are considered to be much less reactive. They do not react fast with water or oxygen, which contributes to their resistance to corrosion.