Let's find the discriminant of <span>x^2+9x+14=0. Here, a=1, b=9 and c=14.
The discriminant is b^2-4ac. Substituting the above numeric values,
9^2-4(1)(14) = 81-56 = 25
The sqrt of 25 is 5. Thus, your polynomial has two unequal, real roots.
Off the point example: If the discriminant were zero, your poly would have two real, equal roots.</span>
If she goes 75 mph for 2 hours, that's 150 miles altogether. 45 mph for 1 hour is 45 miles, so 150 + 45 is 195 miles.
AB means A X B so you have to do 14 / 9 which is 1.5 or there abouts.
A parabolic function's key characteristic is either having 2 x-intercepts or 2 y-intercepts. That is the reason why the standard form of parabolic functions are:
(x-h)^2 = +/- 4a(y-k) or (y-k)^2 = +/- 4a(x-h), where
(h,k) is the coordinates of the vertex
4a is the lactus rectum
a is the distance from the focus to the vertex
This is also called vertex form because the vertex (h,k) is grouped according to their variable.
Since we don't know any of those parameters, we'll just have to graph the data points given as shown in the picture. From this data alone, we can see that the parabola has two x-intercepts, x=-4 and x=-2. Since it has 2 roots, the parabola is a quadratic equation. Its equation should be
y = (x+4)(x+2)
Expanding the right side
y = x²+4x+2x+8
y = x²+6x+8
Rearrange the equation such that all x terms are on one side of the equation
x²+6x+___=y-8+___
The blank is designated for the missing terms to complete the square. Through completing the squares method, you can express the left side of the equation into (x-h)² form. This is done by taking the middle term, dividing it by two, and squaring it. So, (6/2)²=9. Therefore, you put 9 to the 2 blanks. The equation is unchanged because you add 9 to both sides of the equation.
The final equation is
x²+6x+9=y-8+9
(x+3)²=y+1