An object undergoing <span>uniform circular motion </span>is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction. So I'm thinking velocity
Answer:
A.) the inverse of the square of the distance separating them
Explanation:
Coulombs law states that "the force of attraction between two charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them."
Mathematically, F = kq1q2/r²
Where q1 and q2 are the charges
r is the distance between the charges.
According to the law, the force between two charged objects is related to the inverse of the square of the distance separating them.
Answer:
The maximum current, in amperes, that a conductor can carry continuously under the conditions of abuse without exceeding its temperature rating.
Answer:
19.2m/s
Explanation:
Assuming that 2.4m/s^2 was the acceleration and not a typo, we can use the equation v=at, where v=velocity, a=acceleration, and t=time,
plug in known varibles,
v=2.4*8
v=19.2m/s