Answer:
0 m/s.
Explanation:
When an object is shot up into the air the only force acting on it is gravity while neglecting wind. As the gravity is acting on the object it keeps decelerating till its velocity becomes 0 after which it can go no further. The maximum height of the object is at this point.
So, at its maximum height the velocity of the puck will be zero.
The acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
The given parameters;
- mass of the car, m = 1400 kg
- Initial velocity of the car, u = 25 m/s
- coefficient of kinetic friction, μ = 0.7
The acceleration of the car is calculated as follows;
a = μg
a = 0.7 x 9.8
a = 6.86 m/s²
The time taken for the car to stop is calculated by using Newton's second law of motion;
F = ma

Thus, the acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
Learn more here:brainly.com/question/19887955
Its 1.73793151243 as a whole but if rounded it is 1.74
Answer:

Explanation:
Wien's displacement law states that the radiation of the black body curve for different temperatures will give peak values at different wavelengths and this wavelength is related inversely to the temperature.
Formally the law of Wien displacement states that the black body's spectral radiation per unit of wavelength, will give peaks at the wavelength of
which is given by the mathematical expression.
Here, b is proportionality constant with value of
The wavelength of the peak of the Gaussian curve is inversely related to temperature in degree kelvin.
Answer:
A. an increase in the height of the sound wave
Explanation:
Volume of the sound is measured by its intensity
So here we know that
intensity is directly depends on the square of the amplitude of the sound wave
so here as intensity depends on the loudness of the sound given as

so here as the loudness of sound will increase then the intensity will increase and hence the amplitude of the sound will also increase
So correct answer will be
A. an increase in the height of the sound wave