Answer:
D)
Step-by-step explanation:

Answer:
(a) The expected number of guests until the next one pays by American Express credit card is 4.
(b) The probability that the first guest to use an American Express is within the first 10 to checkout is 0.0215.
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of guests until the next one pays by American Express credit card
The probability that a guest paying by American Express credit card is, <em>p</em> = 0.20.
The random variable <em>X</em> follows a Geometric distribution since it is defined as the number of trials before the first success.
The probability mass function of <em>X</em> is:

(a)
The expected value of a Geometric distribution is:

Compute the expected number of guests until the next one pays by American Express credit card as follows:



Thus, the expected number of guests until the next one pays by American Express credit card is 4.
(b)
Compute the probability that the first guest to use an American Express is within the first 10 to checkout as follows:


Thus, the probability that the first guest to use an American Express is within the first 10 to checkout is 0.0215.
Answer:
B. Recursive
Step-by-step explanation:
I calculated it logically
First of all, the modular inverse of n modulo k can only exist if GCD(n, k) = 1.
We have
130 = 2 • 5 • 13
231 = 3 • 7 • 11
so n must be free of 2, 3, 5, 7, 11, and 13, which are the first six primes. It follows that n = 17 must the least integer that satisfies the conditions.
To verify the claim, we try to solve the system of congruences

Use the Euclidean algorithm to express 1 as a linear combination of 130 and 17:
130 = 7 • 17 + 11
17 = 1 • 11 + 6
11 = 1 • 6 + 5
6 = 1 • 5 + 1
⇒ 1 = 23 • 17 - 3 • 130
Then
23 • 17 - 3 • 130 ≡ 23 • 17 ≡ 1 (mod 130)
so that x = 23.
Repeat for 231 and 17:
231 = 13 • 17 + 10
17 = 1 • 10 + 7
10 = 1 • 7 + 3
7 = 2 • 3 + 1
⇒ 1 = 68 • 17 - 5 • 231
Then
68 • 17 - 5 • 231 ≡ = 68 • 17 ≡ 1 (mod 231)
so that y = 68.
Answer:
b+a+09=097
Step-by-step explanation:
welcome