Answer:
The correct pair is A: "apicomplexans—parasites of animals"
Explanation:
- Euglenophyta is a group of unicellular, eukaryotic organisms. They are small, free-living forms, or parasites that present different feeding mechanisms and behaviors, such as heterotrophy, autotrophy, or mixotrophy.
- Dinoflagellates are unicellular, flagellated, free-living protists that might form colonies. Most of them are autotrophic organisms but some of them are heterotrophic, or mixotrophic. In these last cases, dinoflagellates can feed on other dinoflagellates, protozoans, or diatoms. They can also be parasites.
- Entamoebas are endoparasitic organisms with no mitochondria as an adaptation of living in environments with low oxygen concentration.
- Apicomplexa is a unicellular, protist group. They have medical and economic importance as they are<u> animals</u> and human parasites. They have an apical complex that helps them to fixate to the host cell and release a substance that provokes an invagination in the host membrane. This invagination allows the parasite to get into the host cell.
Arthur si warm enough ti suportarla lige
Answer:
The correct answer is - negative feedback loop.
Explanation:
A negative feedback loop takes place in the biology when the end product of a particular reaction leads to decrease in the reaction. A negative feedback loop makes system to bring the homeostasis.
Negative feedback loops takes place inside the body of an individual to decrease the function of a particular reaction, it prepared the body for the change that occur in the atmosphere such as pH, temperature and other.
Thus, the correct answer is - negative feedback loop.
Each time a new ATP is created, ATP synthase must process 5 protons.
<h3>Where is ATP synthase found and what does it do?</h3>
- ADP and phosphate are converted into ATP by the mitochondrial enzyme ATP synthase, which is located in the inner membrane.
- Protons are transported over a gradient created by electron transfer from the chemically positive to the negative side of the proton, which drives the flux of protons.
<h3>How does photosynthesis's ATP synthase function?</h3>
- The light-driven production of ATP is catalyzed by the chloroplast ATP synthase, which is activated in the light and deactivated in the dark by redox-modulation via the thioredoxin system.
- This down-regulation is thought to be crucial for minimizing wasted ATP hydrolysis at night.
<h3>What makes ATP synthase so crucial?</h3>
All cellular functions are powered by ATP, which is constantly used by cells and required for production. About 100 ATP molecules can be produced by each ATP synthase every second.
learn more about ATP synthase here
<u>brainly.com/question/893601</u>
#SPJ4