Let n be the number of expected free throw until she makes the first throw.
Suppose the number of throws are 10, Then she will make 8 of the 10 throws. On 5 throws, she make 4 (80% of 5) and on 2 throws, she makes 1.6, it means one throw. We deduce that the expected number of free throws until she makes one is 2.
Compute the differential for both sides:
4<em>y</em> - 3<em>xy</em> + 8<em>x</em> = 0
→ 4 d<em>y</em> - 3 (<em>y</em> d<em>x</em> + <em>x</em> d<em>y</em>) + 8 d<em>x</em> = 0
Solve for d<em>y</em> :
4 d<em>y</em> - 3<em>y</em> d<em>x</em> - 3<em>x</em> d<em>y</em> + 8 d<em>x</em> = 0
(4 - 3<em>x</em>) d<em>y</em> + (8 - 3<em>y</em>) d<em>x</em> = 0
When <em>x</em> = 0, we have
4<em>y</em> - 3•0<em>y</em> + 8•0 = 0 → 4<em>y</em> = 0 → <em>y</em> = 0
and with d<em>x</em> = 0.05, we get
(4 - 3•0) d<em>y</em> + (8 - 3•0) • 0.05 = 0
→ 4 d<em>y</em> + 0.4 = 0
→ 4 d<em>y</em> = -0.4
→ d<em>y</em> = -0.1
Answer:
148.2
Step-by-step explanation:
LA= PH
P= 8.2+8.2+3.2+3.2=22.8 in
H= 6.5 in
PH= 22.8(6.5)= 148.2 in