Answer:
The solution code is written in Python 3:
- def modifyList(listNumber):
- posCount = 0
- negCount = 0
-
- for x in listNumber:
- if x > 0:
- posCount += 1
- else:
- negCount += 1
-
- if(posCount == len(listNumber)):
- listNumber.append(max(listNumber))
-
- if(negCount == len(listNumber)):
- listNumber.append(min(listNumber))
-
- print(listNumber)
-
- modifyList([-1,-99,-81])
- modifyList([1,99,8])
- modifyList([-1,99,-81])
Explanation:
The key step to solve this problem is to define two variables, posCount and negCount, to track the number of positive value and negative value from the input list (Line 2 - 3).
To track the posCount and negCount, we can traverse through the for-loop and create if else statement to check if the current number x is bigger than 0 then increment posCount by 1 otherwise increment negCount (Line 5- 9).
If all number in the list are positive, the posCount should be equal to the length of the input list and the same rule is applied to negCount. If one of them happens, the listNumber will append either the maximum number (Line 11 -12) or append the minimum number (Line 14-15).
If both posCount and negCount are not equal to the list length, the block of code Line 11 -15 will be skipped.
At last we can print the listNumber (Line 17).
If we test our function using the three sets of input list, we shall get the following results:
[-1, -99, -81, -99]
[1, 99, 8, 99]
[-1, 99, -81]
Answer:
it doesn't? maybe it helps by resetting it but other than that I don't think It does anything
The Home ribbon contains the Paragraph attributes
Solution:
The process of transaction can guarantee the reliability of business applications. Locking resources is widely used in distributed transaction management (e.g; two phase commit, 2PC) to keep the system consistent. The locking mechanism, however, potentially results in various deadlocks. In service oriented architecture, the deadlock problem becomes even worse because multiple transactions try to lock shared resources in the unexpectable way due to the more randomicity of transaction requests, which has not been solved by existing research results. In this paper, we investigate how to prevent local deadlocks, caused by the resource competition among multiple sub-transactions of a gl obal transaction, and global deadlocks from the competition among different global transactions. We propose a replication based approach to avoid the local deadlocks, and a timestamp based approach to significantly mitigate the global deadlocks. A general algorithm is designed for both local and global deadlock prevention. The experimental results demonstrate the effectiveness and efficiency of our deadlock prevention approach. Further, it is also proved that our approach provides higher system performance than traditional resource allocation schemes.
This is the required answer.
Answer:
Computer forensics is the application of investigation and analysis techniques to gather and preserve evidence from a particular computing device in a way that is suitable for presentation in a court of law. The goal of computer forensics is to perform a structured investigation and maintain a documented chain of evidence to find out exactly what happened on a computing device and who was responsible for it.
Explanation:
If this helped you, please consider brainly.
Thank you ,
Miss Hawaii