Answer:
Option C

Step-by-step explanation:
we have

we know that
The formula to solve a quadratic equation of the form
is equal to

in this problem we have

so

substitute





The original function is
f(x)=√x
As this is condition for √x function, x≥ 0
So,
Domain= [0, infinity)
Range= [0, infinity)
After the reflection across x-axis and y-axis, we get a function,
g(x)=-√-x
-x≥ 0 means x≤ 0,
So,
Domain= (-infinity, 0]
Range= (-infinity, 0]
From this you can see that
-The only value that is in the domains of both functions is 0.
-The range of g(x) is all values less than or equal to 0.
only these points are correct and all other points are wrong.
See the attached graphs for both functions.
Distribute the 34 to both the x and -1, and once you do that, your answer is 34x - 34
Answer: 14:4 , 21:6 , 28:8 , 35:10
Step-by-step explanation:
Answer:
<h2><em><u>16</u></em><em><u> </u></em><em><u>yards</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>,</u></em>
Volume of the rectangular prism = 128 cubic yards
Base area of the prism = 8 square yards
<em><u>Let</u></em><em><u>,</u></em>
Height of the prism be = h
<em><u>As</u></em><em><u> </u></em><em><u>we</u></em><em><u> </u></em><em><u>know</u></em><em><u>,</u></em><em><u> </u></em>
Base area × height = Volume of the given prism
<em><u>Therefore</u></em><em><u>,</u></em><em><u> </u></em>
By the problem,
=> 8 sq. yd × h = 128 cu. yd
=> 8h = 128
- <em>(</em><em>On</em><em> </em><em>dividing</em><em> </em><em>8</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>

- <em>(</em><em>On</em><em> </em><em>Simplification</em><em>)</em>
=> h = 16
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>height</u></em><em><u> </u></em><em><u>(</u></em><em><u>h</u></em><em><u>)</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>prism</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>16</u></em><em><u> </u></em><em><u>yards</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>