The symbiotic relationship in which both participating parties benefit is called mutualism. When one organism benefits and the other organism is harmed it is called<span> parasitism.</span>
Answer:
<u><em>Galapagos finches</em></u><u> have various beak sizes that make foraging for food more successful.</u>
Explanation:
Organisms evolve over time due to changes in their genome. These are pontaneous, and occur in DNA at random. These changes are called mutations and form alleles or different forms of a gene.
Over time within a population, the number alleles increase the variation of the population. These variants may confer specific traits within an individual, that may confer a biological advantage.
Thus, the trait may make the organisms more capable of obtaining food, shelter a mate etc. or ensure survival, i.e. they are able to pass on their genes to the next generation.
Exactly 989527/1048576, or approximately 94.37%
Since each trait is carried on a different chromosome, the two traits are independent of each other. Since both parents are heterozygous for the trait, each parent can contribute 1 of a possible 4 combinations of the alleles. So there are 16 possible offspring. I'll use "a", "A", "b", "B" to represent each allele and the possible children are aabb, aabB, aaBb, aaBB, aAbb, aAbB, aABb, aABB, Aabb, AabB, AaBb, AaBB, AAbb, AAbB, AABb, and AABB
Of the above 16 possibilities, there are 7 that are homozygous in an undesired traint and 9 that don't exhibit the undesired trait. So let's first calculate the probability of "what are the chances that all 5 children not exhibiting an undesired trait?" and then subtract that result from 1. So
1-(9/16)^5 = 1 - 59049/1048576 = 989527/1048576 which is approximately 0.943686485 = 94.3686485%
So the answer is exactly 989527/1048576, or approximately 94.37%
The alveoli needs of the epithelium for the gaseous exchange and stratified squamous epithelium are formed of multiple layers the difficulty in a gaseous exchange