Answer:
x > 73
Step-by-step explanation:
x+7 > 80
subtract 7 from both sides
x + 7 - 7 > 80 - 7
x > 73
-Chetan K
Answer:
<u>Option A</u>
Step-by-step explanation:
To reflect line segment BC over line m, BB' will be perpendicular to the line m
and line m bisector of BB'.
<u>So, the correct answer is option A</u>
A) Line m is the perpendicular bisector of line segment BB' and the line segment CC'
<u>Option b is wrong</u> , it is impossible for the line B'C' to be perpendicular to line BC. B'C' is the image of BC.
<u>Both option c and d is wrong</u> because the perpendicular distance from b to the line m not equal to the perpendicular distance from c to the line m.
Answer:
So about 95 percent of the observations lie between 480 and 520.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviations of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
The mean is 500 and the standard deviation is 10.
About 95 percent of the observations lie between what two values?
From the Empirical Rule, this is from 500 - 2*10 = 480 to 500 + 2*10 = 520.
So about 95 percent of the observations lie between 480 and 520.
Answer:
x -2y = -4
Step-by-step explanation:
The slope of the line between points C and D is ...
m = (y2 -y1)/(x2 -x1)
m = (7 -13)/(5 -2) = -6/3 = -2
The slope of the perpendicular line is the opposite reciprocal of this: -1/(-2) = 1/2. The point-slope equation of the desired line is ...
y -k = m(x -h) . . . . line with slope m through point (h, k)
y -1 = 1/2(x -(-2))
We can rearrange this to standard form.
2y -2 = x +2 . . . . . multiply by 2
-4 = x -2y . . . . . . . subtract 2y+2
x -2y = -4 . . . . . . standard form equation of the desired line