The problem was too big to type in my phone.
I hope my answer is readable.
P.S After the collision P is also moving in the same direction as Q.
To develop this problem it is necessary to apply the concepts performed to the absolute pressure based on the reference pressure (atmospheric) and the pressure that is generated due to the height of the column of the measured liquid.
In mathematical terms the previous concept can be expressed as

Where
Atmospheric Pressure
Density
g = Gravitational acceleration
h = Height
Our values are given as

g = 9.8m/s


Replacing we have then that



Therefore the absolute pressure in the test section is 99.9019kPa
T = 0.017 s
From the foot to the brain is almost the same as the height. We are not given the height of the woman, but to find "about" how much time, we need a height to work with.
She *could* be 1.7 m <- height = distance
Formula for speed, where k = speed, d = distance, t = time
k = d/t
Rearrange to solve for time:
t = d/k
Substitute known values:
t = (1.7 m) / (100 m/s)
Solve:
t = 0.017 s
Therefore, it takes about 0.017s for the impulse to travel from the foot to the brain.
Answer:
An atom that loses a electron is called a cation and has an overall positive charge.
Answer:
6093.2328 J
Explanation:
For cylindrical rod moment of inertia will be


we have given time =0.02 sec
Angular speed =
Rotational KE = 