Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
Explanation:
To determine your total daily calorie needs, multiply your BMR by the appropriate activity factor, as follows: If you are sedentary (little or no exercise) : Calorie-Calculation = BMR x 1.2. If you are lightly active (light exercise/sports 1-3 days/week) : Calorie-Calculation = BMR x 1.375.
<em><u>HAPPY TO HELP</u></em>
Oxygen....................
(a) 
The moment of inertia of a uniform-density disk is given by

where
M is the mass of the disk
R is its radius
In this problem,
M = 16 kg is the mass of the disk
R = 0.19 m is the radius
Substituting into the equation, we find

(b) 142.5 J
The rotational kinetic energy of the disk is given by

where
I is the moment of inertia
is the angular velocity
We know that the disk makes one complete rotation in T=0.2 s (so, this is the period). Therefore, its angular velocity is

And so, the rotational kinetic energy is

(c) 
The rotational angular momentum of the disk is given by

where
I is the moment of inertia
is the angular velocity
Substituting the values found in the previous parts of the problem, we find
