1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
4 years ago
13

What is the standard form of 3x+(2-4x)

Mathematics
1 answer:
Naily [24]4 years ago
6 0
-x+2 
Hope it helps you  
You might be interested in
What is an angle that measures 1/2 turn
Ad libitum [116K]
An angle that measures 1/2 turn is 180 degree angle 
4 0
3 years ago
What is the value of x?
frez [133]

\left\{\begin{array}{ccc}x+2y=4&\text{multiply both sides by 5}\\4x-5y=42&\text{multiply both sides by 2}\end{array}\right\\\\\underline{+\left\{\begin{array}{ccc}5x+10y=20\\8x-10y=84\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad13x=104\qquad\text{divide both sides by 13}\\\\\boxed{x=8}\\\\Answer:\ \boxed{\boxed{x=8}}

5 0
3 years ago
Write one word problem using arithmetic sequences and another using geometric sequences.
Levart [38]
Hey There!

If i got this down right,
An = A1 + (n - 1)d
Sn = A1 + A2 + A3 + ... + An
A1 is given by
Sn = n (A1 + An) / 2
For Example

An = A1 + (n - 1)d
= 6 + 3 (n - 1)
= 3 n + 3
n = 50

Hope This Helps!!!
5 0
3 years ago
Read 2 more answers
Four Friends went scuba diving today. Ali dove 70 feet, Tim went down 50 feet. Carl dove 65 feet, and Brenda reached 48 feet bel
Troyanec [42]
Brenda, Tim, Carl, And Ali
6 0
4 years ago
Read 2 more answers
Miguel is playing a game in which a box contains four chips with numbers written on them. Two of the chips have the number 1, on
insens350 [35]
1) We have that there are in total 6 outcomes If we name the chips by 1a, 1b, 3 ,5 the combinations are: 1a,3 \ 1b, 3 \1a, 5\ 1b, 5\ 3,5\1a,1b. Of those outcomes, only one give Miguel a profit, 1-1. THen he gets 2 dollars and in the other cases he lose 1 dollar. Thus, there is a 1/6 probability that he gets 2$ and a 5/6 probability that he loses 1$.
2) We can calculate the expected value of the game with the following: E=\frac{1}{6}*2- \frac{5}{6} *1. In general, the formula is E= \sum{p*V} where E is the expected value, p the probability of each event and V the value of each event. This gives a result of E=2/6-5/6=3/6=0.5$ Hence, Miguel loses half a dollar ever y time he plays.
3) We can adjust the value v of the winning event and since we want to have a fair game, the expecation at the end must be 0 (he must neither win or lose on average). Thus, we need to solve the equation for v:
0=\frac{1}{6}v -\frac{5}{6} =0. Multiplying by 6 both parts, we get v-5=0 or that v=5$. Hence, we must give 5$ if 1-1 happens, not 2.
4) So, we have that the probability that you get a red or purple or yellow sector is 2/7. We have that the probability for the blue sector is only 1/7 since there are 7 vectors and only one is blue. Similarly, the 2nd row of the table needs to be filled with the product of probability and expectations. Hence, for the red sector we have 2/7*(-1)=-2/7, for the yellow sector we have 2/7*1=2/7, for the purple sector it is 2/7*0=0, for the blue sector 1/7*3=3/7. The average payoff is given by adding all these, hence it is 3/7.
5) We can approach the problem just like above and set up an equation the value of one sector as an unknown. But here, we can be smarter and notice that the average outcome is equal to the average outcome of the blue sector.  Hence, we can get a fair game if we make the value of the blue sector 0. If this is the case, the sum of the other sectors is 0 too (-2/7+0+2/7) and the expected value is also zero.
6) We want to maximize the points that he is getting. If he shoots three points, he will get 3 points with a probability of 0.30. Hence the average payoff is 0.30*3=0.90. If he passes to his teammate, he will shoot for 2 points, with a success rate of 0.48. Hence, the average payoff is 0.48*2=0.96. We see that he should pass to his player since 0.06 more points are scored on average.
7) Let us use the expections formula we mentioned in 1. Substituting the possibilities and the values for all 4 events (each event is the different profit of the business at the end of the year).
E=0.2*(-10000)+0.4*0+0.3*5000+0.1*8000=-2000+0+1500+800=300$
This is the average payoff of the firm per year.
8) The firm goes even when the total profits equal the investment. Suppose we have that the firm has x years in business. Then x*300=1200 must be satisfied, since the investment is 1200$ and the payoff per year is 300$. We get that x=4. Hence, Claire will get her investment back in 4 years.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Round to the nearest tenth.<br> 4.8367
    7·1 answer
  • Lena's guest house is 15 meters long and 12 meters wide how long is the diagonal of the house using Pythagorean theorem
    11·2 answers
  • What is 247,039 rounded to the nearest ten thousand
    7·2 answers
  • Macy estimated a product to be 800. The actual product is 768. Her estimate was an
    8·1 answer
  • What does p equal?pls help me.
    7·1 answer
  • Helpps mee, solve for X in the diagram above.
    14·1 answer
  • PLZ HELP <br> Is it one solution, infinite solution or no solution (explain why)<br> 3x+6 = -6 + 3x
    13·1 answer
  • How do I solve part c
    12·1 answer
  • Who goes to Catonsville middle school pls answer
    14·2 answers
  • Given the following graph of a point on the polar plane, name another set of coordinates that could also represent this point us
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!