You're looking for the largest number <em>x</em> such that
<em>x</em> ≡ 1 (mod 451)
<em>x</em> ≡ 4 (mod 328)
<em>x</em> ≡ 1 (mod 673)
Recall that
<em>x</em> ≡ <em>a</em> (mod <em>m</em>)
<em>x</em> ≡ <em>b</em> (mod <em>n</em>)
is solvable only when <em>a</em> ≡ <em>b</em> (mod gcd(<em>m</em>, <em>n</em>)). But this is not the case here; with <em>m</em> = 451 and <em>n</em> = 328, we have gcd(<em>m</em>, <em>n</em>) = 41, and clearly
1 ≡ 4 (mod 41)
is not true.
So there is no such number.
DCA is 116 because x=29, when you plug 29 into x you get 116
Answer:
ohhhh we have the same question
Step-by-step explanation:
Step-by-step explanation:
We have given,
A rational function : f(x) = 
W need to find :
Point of discontinuity : - At x = 4, f(x) tends to reach infinity, So we get discontinuity point at x =4.
For no values of x, we get indetermined form (i.e
), Hence there is no holes
Vertical Asymptotes:
Plug y=f(x) = ∞ in f(x) to get vertical asymptote {We can us writing ∞ =
}
i.e ∞ = 
or 
or x-4 =0
or x=4, Hence at x = 4, f(x) has a vertical asymptote
X -intercept :
Plug f(x)=0 , to get x intercept.
i.e 0 = 
or x - 2 =0
or x = 2
Hence at x=2, f(x) has an x intercept
Horizontal asymptote:
Plug x = ∞ in f(x) to get horizontal asymptote.
i.e f(x) =
= 
or f(x) = 
or f(x) = 1 = y
hence at y =f(x) = 1, we get horizontal asymptote
The greatest common factor of 35 and 42 is 7
35/7 is 5 and 42/7 is 6
Hope this helps!