a y-intercept is any point that has an x-value of 0. for example, the ordered pairs (0,6) and (0,-4) would both be considered y-intercepts since any point with an x-value of 0 overlaps with the y-axis.
3
The period is the amount it time it takes to make one complete cycle. If we start at 0 for simplicity sake, the graph is at its maximum point. It reaches its maximum point again at 3, this is one complete cycle and thus the period is 3.
Umm....where is the graph?
or is it just my computer????
Answer:
![\sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Step-by-step explanation:
At this point, we can transform the square root into a fourth root by squaring the argument, and bring into the other root:
![\sqrt x \cdot \sqrt[4] x =\sqrt [4] {x^2} \cdot \sqrt[4] x = \sqrt[4]{x^2\cdot x} = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%5Csqrt%20%5B4%5D%20%7Bx%5E2%7D%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%5Ccdot%20x%7D%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Alternatively, if you're allowed to use rational exponents, we can convert everything:
![\sqrt x \cdot \sqrt[4] x = x^{\frac12} \cdot x^\frac14 = x^{\frac12 +\frac14}= x^{\frac24 +\frac14}= x^\frac34 = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20x%5E%7B%5Cfrac12%7D%20%5Ccdot%20x%5E%5Cfrac14%20%3D%20x%5E%7B%5Cfrac12%20%2B%5Cfrac14%7D%3D%20x%5E%7B%5Cfrac24%20%2B%5Cfrac14%7D%3D%20x%5E%5Cfrac34%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Y varies inversely with x
means that y=k/x
with x=0.7 and y=80
we have 80=k/0.7
k=0.7x80=56
so the equation is
y=56/x