Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km
I think it’s b... not sure tho sorry
When salt is added, it makes it harder for the water molecules to escape from the pot and enter the gas phase, which happens when water boils, Giddings said. This gives salt water a higher boiling point, she said.
Answer:
Explanation:
Force between two charges is given by the following expression
F =
Q₁ and Q₂ are two charges and d is distance between two.
.1 = 
If Q₁ becomes three times , force will become 3 times . Hence force becomes .3 N in the first case.
Force F = .3 N
If charge becomes one fourth , force also becomes one fourth .
F= 
= .025 N.