Answer:
distance difference would a) increase
speed difference would f) stay the same
Explanation:
Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.
Their equations of motion for distance and velocities are




Their difference in distance are therefore:


(As

So as time progress t increases, Δs would also increases, their distance becomes wider with time.
Similarly for their velocity difference


Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.
This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.
Answer:
The announcement he had made promised to overturn our understanding of the Universe. If the data gathered by 160 scientists working on the project were correct, the unthinkable had been observed. Particles – in this case, neutrinos – had travelled faster than light.
Explanation: Plz Mark brainleist
I am pretty sure this is uranium. it has 140 neutrons.
Answer:
They would attract one another
Explanation:
The interaction between two like-charged objects is repulsive. ... Positively charged objects and neutral objects attract each other negatively charged objects and neutral objects attract each other.
Explanation:
Water does expand with heat (and contract with cooling), but the amount of expansion is pretty small. So when you boil a can filled with water and seal it, the water will contract slightly as it cools. The can may kink slightly, but that will be it. Actually, most likely the only things you will be able to see is then top and bottom will be sucked in and go concave. Just like a commercial can of beans.
Now if you have a can with a little water and a big air space, things are completely different.
As the water boils, water vapour is given off. Steam. Let it boils for a minute just to make sure (nearly) all the air is expelled and the can is filled with steam.
Now when you put the lid on and cool the can, that steam condenses back to water, and goes from filling the can to a few drops of water. The can is now filled (if that is the right word) with a near vacuum, The air pressure, 15 lbs/square inch, will be pressing on every surface of the can, with nothing inside the can to resist it.
The can will crumple before your eyes.