10% of 18 tonnes = 1.8 tonnes
30% of 18 tonnes = 5.4 tonnes
18 - 5.4 tonnes = 12.6 tonnes
ahaha good one
Step-by-step explanation:
...........
Essentially, you can always tell a thing's position by 3 coordinates. We also say that our world is three-dimentional: it has three dimensions -that's why three coordinates are needed. If something is on a flat surface, you know its one coordinate (all points on the same surface have the same coordinate) so you only need two more (you can call them vertical and horizontal)
Answer:

Step-by-step explanation:
Given

Required
Shorten
We have:

Rationalize

Expand



Take positive square roots
Take LCM

Collect like terms


To find the residual I would subtract the predicted value from the measured value so for x-value 1 the residual would be 2-2.6 = -0.6