The first thing we have to do is to measure your weight
using a weighing scale.
Suppose your weight is 130 pounds, therefore you can lift:
<span>130 pounds * 1.182 • 10^3 = = 153,660 pounds or 1.537 x
10^5 pounds</span>
A1^(r)^(n-1)
a6= 1000^(-2)^5
1000^-16
1/1000^16
a6= 0
Answer= 0
If you have a graphing calculator just put in the equation in 'y=' (not the i equation), and then go to 2nd trace and see where the y=0, those numbers under the x column are the zeros. For the first one, the zeros are: -1, .5, and 2.8. For the second question the zeros are: -3 and about 1.9. The zeros with a decimal are estimations.
Answer:
Z scores between -0.995 and 0.995 bound the middle 68% of the area under the stanrard normal curve
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Middle 68%
Between the 50 - (68/2) = 16th percentile and the 50 + (68/2) = 84th percentile.
16th percentile:
X when Z has a pvalue of 0.16. So X when Z = -0.995
84th percentile:
X when Z has a pvalue of 0.84. So X when Z = 0.995.
Z scores between -0.995 and 0.995 bound the middle 68% of the area under the stanrard normal curve