Answer:
1. 617.5 cm³
2. 335.6 in³
3. 151.6 m³
4. 3479.1 ft³
Step-by-step explanation:
1.
B1: 19.5 × 9 = 175.5
B2: 6 × 13 = 78
sqrt(B1 ×B2) = 117
h = 5
Volume = ⅓ × 5 × [175.5 + 78 + 117]
617.5
2.
B1: 3.14 × 4.5² = 63.585
B2: 3.14 × 3² = 28.26
sqrt(B1 ×B2) = 42.39
h = 7.5
Volume = ⅓ × 7.5 × [63.585 + 28.26 + 42.39]
335.5875
3.
B1: ½(8+12) × 6 = 60
B2: ½(3+4.5) × 2.25 = 8.4375
sqrt(B1 ×B2) = 22.5
h = 5
Volume = ⅓ × 5 × [60 + 8.4364 + 22.5]
151.5625
4.
B1: 3.14 × 12² = 452.16
B2: 3.14 × 7² = 153.86
sqrt(B1 ×B2) = 263.76
h² = 13² - (12-7)²
h² = 13² - 5²
h² = 144
h = 12
Volume = ⅓ × 12 × [452.16 + 153.86 + 263.76]
3479.12
Answer:
X = 2, 4, 6, 7, 9
Y = 29, 33, 37, 39, 43
Step-by-step explanation:
Given a best fit line of :
y = 2x + 25
Take points X as :
X = 2, 4, 6, 7, 9
X = 2
y = 2(2) + 25 = 4 + 25 = 29
X = 4
y = 2(4) + 25 = 8 + 25 = 33
X = 6
y = 2(6) + 25 = 12 + 25 = 37
X = 7
y = 2(7) + 25 = 14 + 25 = 39
X = 9
y = 2(9) + 25 = 18 + 25 = 43
Answer:
N is less than 2, (C)
Step-by-step explanation:
Divide both sides by -6, and since two negatives make a positive, you get n is less then 2.
Hey there!
<u>Use the quadratic formula to find the solution(s). x² + 2x - 8 = 0</u>
x = -4 or x = 2 ✅
<em><u>Quadratic</u></em><em><u> </u></em><em><u>formula </u></em><em><u>:</u></em><em><u> </u></em>ax² + bx + c = 0 where a ≠ 0
The number of real-number solutions <em>(roots)</em> is determined by the discriminant (b² - 4ac) :
- If b² - 4ac > 0 , There are 2 real-number solutions
- If b² - 4ac = 0 , There is 1 real-number solution.
- If b² - 4ac < 0 , There is no real-number solution.
The <em><u>roots</u></em> of the equation are determined by the following calculation:

Here, we have :
1) <u>Calculate </u><u>the </u><u>discrim</u><u>i</u><u>n</u><u>ant</u><u> </u><u>:</u>
b² - 4ac ⇔ 2² - 4(1)(-8) ⇔ 4 - (-32) ⇔ 36
b² - 4ac = 36 > 0 ; The equation admits two real-number solutions
2) <u>Calculate </u><u>the </u><u>roots </u><u>of </u><u>the </u><u>equation</u><u>:</u>
▪️ (1)

▪️ (2)

>> Therefore, your answers are x = -4 or x = 2.
Learn more about <u>quadratic equations</u>:
brainly.com/question/27638369