Answer:
Q = 3937.56 J
Explanation:
Heat transferred due to change in temperature is given by :

c is the specific heat of water, c=4.18 J/g-°C
We have, m = 15 g, 
So,

Hence, 3937.56 J of heat is transferred.
Delta E = Ef - Ei
E = energy , h = plank constant , v = frequency
h= 6.626 * 10 ^-34 j*s , T = 10 ^ 12 , v = 74 * 10 ^12 Hz , Hz = s^-1
E = ( 6.626 * 10^ -34 j*s) ( 74 * 10 ^ 12 s^ -1 ) = 4.90 * 10 ^ -20 J
Delta E = Ef - Ei
-4.90 * 10 ^ -20 J = -2.18 * 10 ^ -18J ( 1/4 ^2 - 1/x ^2)
0.0225 = 0.0625 - ( 1/x ^ 2)
0.225 - 0.0625 = - 1/ x ^ 2
- 0.0400 = - 1/x ^2 = -1 / - 0.0400 = x^2
25 = x^2
x = 5
Answer:
b. 1.5 atm.
Explanation:
Hello!
In this case, since the undergoing chemical reaction suggests that two moles of A react with one moles of B to produce two moles of C, for the final pressure we can write:

Now, if we introduce the stoichiometry, and the change in the pressure
we can write:

Nevertheless, since the reaction goes to completion, all A is consumed and there is a leftover of B, and that consumed A is:

Thus, the final pressure is:

Therefore the answer is b. 1.5 atm.
Best regards!
Answer:
The answer is
<h2>250 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of object = 25 mL
Density = 10 g/mL
The mass of the object is
mass = 25 × 10
We have the final answer as
<h3>250 g</h3>
Hope this helps you
Should be their masses. Because t<span>he strength of the gravitational force between two objects depends on two factors, mass and </span>distance<span>. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases.</span>