They make their food furing photosynthesis
The question is incomplete as it does not have the options which are:
A) single-stranded complementary tails
B) blunt ends
C) poly-A sequences
D) 5' cap
E) interference
Answer:
A) single stranded complementary tails
Explanation:
Restriction endonuclease is the enzyme which cuts the DNA sequence in the internal sequence.
The endonuclease enzyme can cut the DNA sequence in a way that it can form the cuts with the single-stranded overhangs called sticky ends and without overhangs called blunt ends.
The sticky ends are produced when the enzyme makes cut at the single strand and then makes the cut at between the same base at the nitrogenous base. This type of asymmetrical cut forms the single-stranded overhangs which can form the complementary base pairs easily.
Thus, Option-A is correct.
Answer:
MRCORRECT has answered the question
Explanation:
Do to the fact that Earth's axis is tilted 23.5 degrees to the plane of the "ecliptic", which is the plane of the Earth's orbit around the Sun. Each planet's orbital plane is a little different from Earth's, and each planet has a different axial tilt. The fact that we are talking about 5 dgrees we are talking about Jupiter which there would be little to no change
The answer is a because he can not get the correct order cause of the sun
Answer:
This question is incomplete
Explanation:
This question is incomplete because of the absence of the chart referred to in the question. However, what appears to be the case is that the three nitrogenous bases represent codons (and the missing chart is the codon chart). The mutation that has the potential to cause more damage will be the one that would change the amino acid formed from the codon change.
A. CAU to CAC: The codons CAU and CAC both form the amino acid histidine and thus is not expected to cause a major damage.
B. UGU to UGC: The codons UGU and UGC both form the amino acid cysteine and thus is not expected to cause a major damage.
C. UCU to UUU: <u>Codon UCU forms the amino acid serine while the codon UUU forms the amino acid phenylalanine</u>. Thus, this eventual change in the amino acid formed has the potential to cause a major damage and thus option C is the correct option.
NOTE that a codon is a sequence of three DNA/RNA nucleotides that corresponds to a single amino acid.