<span>node spacing = half of wavelength = 3 cm
velocity = 10 cm/s = freq * wavelength
hench freq = 10/6 = 5/3 = 1.7 hz</span>
The total momentum of the players after collision is 130 kgm/s.
The given parameters:
- <em>Initial momentum of the returner, </em>
<em> = 0 kgm/s</em> - <em>The initial momentum of the diving player, </em>
<em> = 130 kgm/s</em>
The total momentum of the players after collision is determined by applying the principle of conservation of linear momentum as follows;

Thus, the total momentum of the players after collision is 130 kgm/s.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
Explanation:
A Spring stretches / compresses when force is applied on them and they are governed by the Hookes Law which states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched.

F is the force applied and x is the elongation of the spring
k is the spring constant.
negative sign indicates the change in direction from equilibrium position.
In the given question, we dont have force but we know that the pan is hanging. We also know from the Newton's second law of motion that

Inserting this into Hooke's Law

computing it for x,

This is the model which will tell the length of the spring against change in the mass located in the pan.
Answer:
mass of ball 1=m1
mass of ball 2=m2
velocity of ball=r1w1
velocity of ball 2=r2w2
Total angular momentum=m1*v1+m2*v2
but
v1=r1*w1
v2=r2*w2
Substitute values in above equation
Total angular momentum of the system=m1*r1*w1+m2*r2*w2