Consider velocity to the right as positive.
First mass:
m₁ = 4.0 kg
v₁ = 2.0 m/s to the right
Second mass:
m₂ = 8.0 kg
v₂ = -3.0 m/s to the left
Total momentum of the system is
P = m₁v₁ + m₂v₂
= 4*2 + 8*(-3)
= -16 (kg-m)/s
Let v (m/s) be the velocity of the center of mass of the 2-block system.
Because momentum of the system is preserved, therefore
(m₁+m₂)v= -16
(4+8 kg)*(v m/s) = -16 (kg-m)/s
v = -1.333 m/s
Answer:
The center of mass is moving at 1.33 m/s to the left.
Answer:
The Richter scale measures the largest wiggle (amplitude) on the recording, but other magnitude scales measure different parts of the earthquake. The USGS currently reports earthquake magnitudes using the Moment Magnitude scale, though many other magnitudes are calculated for research and comparison purposes.
The chaotic nature of the Solar System excluding Pluto was established by the numerical computation of the maximum Lyapunov exponent of its secular system over 200 myr.
<h3>What is chaotic motion of the solar system ?</h3>
There has been an increase in awareness of chaotic dynamics in the solar system over the past 20 years. The orbits of tiny objects in the solar system, such as asteroids, comets, and interplanetary dust, are now known to be chaotic and to experience significant variations across geological time periods.
- a completely unpredictable orbit, or one where significant changes in the orbit can result from even small changes in the position and/or velocity of the orbiting entity.
Learn more about Chaotic motion here:
brainly.com/question/13717859
#SPJ4
Answer here
The displacement of the cars is somewhere near 0 miles since they virtually finish where they started. Yet the successful cars have covered a distance of 500 miles