Well, Velocity is the speed of something in a given direction, and speed is the rate at which someone or something is able to more or operate. They both invlove speed, so this is a hard one, but I wold say either B or D
Answer:
2.85 rad/s
Explanation:
5 cm = 0.05 m
20 g = 0.02 kg
When dropping the 2nd object at a distance of 0.05 m from the center of mass, its corrected moments of inertia is:

So the total moment of inertia of the system of 2 objects after the drop is:

From here we can apply the law of angular momentum conservation to calculate the post angular speed

they have more energy than radio waves.
&
because the wavelength of the light waves are too small
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2
You'll hear that force called different things in different places. It
may be called "electromotive force", "EMF", "potential difference",
or "voltage".
It's just a matter of somehow causing the two ends of the wire
to have different electrical potential. When that happens, the
free electrons in the copper suddenly have a burning desire to
travel ... away from the end that's more negative, toward the end
that's more positive, and THAT's an "electric current".