<span>the ratio of the force produced by a machine to the force applied to it, used in assessing the performance of a machine. I would say the answer is D, but i'm not sure. :)</span>
Answer:
See Explanation
Explanation:
The density of a substance is an intrinsic property. Intrinsic properties are properties that are characteristic of a material. It does not depend on the amount of substance present.
Since density is an intrinsic or intensive property, If you cut a piece of gold in half, the density of each piece will still be 19.32 g/cm 3 because density does not depend on the size of the gold piece.
To solve this problem it is necessary to apply the concepts related to the continuity of fluids in a pipeline and apply Bernoulli's balance on the given speeds.
Our values are given as


From the continuity equations in pipes we have to

Where,
= Cross sectional Area at each section
= Flow Velocity at each section
Then replacing we have,



From Bernoulli equation we have that the change in the pressure is

![7.3*10^3 = \frac{1}{2} (1000)([ \frac{(1.25*10^{-2})^2 }{0.6*10^{-2})^2} v_1 ]^2-v_1^2)](https://tex.z-dn.net/?f=7.3%2A10%5E3%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%281000%29%28%5B%20%5Cfrac%7B%281.25%2A10%5E%7B-2%7D%29%5E2%20%7D%7B0.6%2A10%5E%7B-2%7D%29%5E2%7D%20v_1%20%5D%5E2-v_1%5E2%29)


Therefore the speed of flow in the first tube is 0.9m/s
Answer:
Part a)

Part b)
this is a large potential which can not be possible because at this high potential the air will break down and the charge on the sphere will decrease.
Part C)
here we can assume the sphere is placed at vacuum so that there is no break down of air.
Explanation:
Part a)
As we know that the potential near the surface of metal sphere is given by the equation

here we have
Q = 8 C
R = 10.0 cm
now we have


Part b)
this is a large potential which can not be possible because at this high potential the air will break down and the charge on the sphere will decrease.
Part C)
here we can assume the sphere is placed at vacuum so that there is no break down of air.
The weight of an object is mass*acceleration. In this case mass*g.
1000*9.8=9800
So the car has a weight of 9800 N.