1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
13

Which of the following advancements could science and technology reasonably contribute to society?

Physics
2 answers:
Alexxx [7]3 years ago
7 0

Answer:            

idk search it on google chrome

Explanation:

tia_tia [17]3 years ago
3 0

Answer:

The effects of technological advancement are both positive and negative. Positively, technology advancement has simplified the way we do things, it saves time, it increases on production, it simplifies communication, it has improved health care and it has also improved our educational environment.

Explanation:

You might be interested in
A 0.200-m uniform bar has a mass of 0.795 kg and is released from rest in the vertical position, as the drawing indicates. The s
aleksklad [387]

Explanation:

Since, the rod is present in vertical position and the spring is unrestrained.

So, initial potential energy stored in the spring is U_{s} = 0

And, initial potential gravitational potential energy of the rod is U_{g} = \frac{mgL}{2}.

It is given that,

       mass of the bar = 0.795 kg

            g = 9.8 m/s^{2}

           L = length of the rod = 0.2 m

Initial total energy T = \frac{mgL}{2}

Now, when the rod is in horizontal position then final total energy will be as follows.

            T = \frac{1}{2}kx^{2} + I \omega^{2}

where,    I = moment of inertia of the rod about the end = \frac{mL^{2}}{3}

Also,    \omega = \frac{\nu}{L}

where,    \nu = speed of the tip of the rod

              x = spring extension

The initial unstrained length is x_{o} = 0.1 m

Therefore, final length will be calculated as follows.

              x' = \sqrt{(0.2)^{2} + (0.1)^{2}} m

Then,  x = x' - x_{o}

          x = \sqrt{(0.2)^{2} + (0.1)^{2}} m - 0.1 m

             = 0.1236 m

       k = 25 N/m

So, according to the law of conservation of energy

       \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1 \times mL^{2}}{2 \times 3}(\frac{\nu}{L})^{2}

      \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1}{6}mv^{2}

Putting the given values into the above formula as follows.

   \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1}{6}mv^{2}

  \frac{0.795 kg \times 9.8 \times 0.2 m}{2} = \frac{1}{2} \times 27 N/m \times (0.1236)^{2} + \frac{1}{6} \times 0.795 \times v^{2}

          v = 2.079 m/s

Thus, we can conclude that tangential speed with which end A strikes the horizontal surface is 2.079 m/s.

7 0
3 years ago
In a machine, work output is less than work input because some energy is converted into thermal energy. true or false.
tamaranim1 [39]
True ..........................
7 0
3 years ago
Read 2 more answers
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bu
vlada-n [284]

Answer:

\frac{1}{10}M

Explanation:

To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after

As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved

⇒I_{1} \times W_{1} =I_{2} \times W_{2}

  • I_{1} is the moment of interia of earth before impact
  • W_{1} is the angular velocity of earth about an axis passing through the center of earth before impact
  • I_{2} is moment of interia of earth and asteroid system
  • W_{2} is the angular velocity of earth and asteroid system about the same axis

let  W_{1}=W

since \text{Time period of rotation}∝\frac{1}{\text{Angular velocity}}

⇒ if time period is to increase by 25%, which is \frac{5}{4} times, the angular velocity decreases 25% which is \frac{4}{5}  times

therefore W_{1} = \frac{4}{5} \times W_{1}

I_{1}=\frac{2}{5} \times M\times R^{2}(moment of inertia of solid sphere)

where M is mass of earth

           R is radius of earth

I_{2}=\frac{2}{5} \times M\times R^{2}+M_{1}\times R^{2}

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)

where M_{1} is mass of asteroid

⇒ \frac{2}{5} \times M\times R^{2} \times W_{1}=}(\frac{2}{5} \times M\times R^{2}+ M_{1}\times R^{2})\times(\frac{4}{5} \times W_{1})

\frac{1}{2} \times M\times R^{2}= (\frac{2}{5} \times M\times R^{2}+ M_{1}\times R^{2})

M_{1}\times R^{2}= \frac{1}{10} \times M\times R^{2}

⇒M_{1}=}\frac{1}{10} \times M

3 0
3 years ago
You are an astronaut in space far away from any gravitational field, and you throw a rock as hard as you can. The rock will:
Nesterboy [21]

Answer:

the rock will continue at the same speed unless it is affected by another force such as gravity and so if you threw it it will continue to move unless affected by a force

Explanation:

this is because Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.

7 0
3 years ago
A moving van travels 10km North, then 4 km east, drops off some furniture and then drives 8 km south. (a) Sketch the path of the
Juli2301 [7.4K]

Answer:

4.47 km

Explanation:

If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.

From Pythagoras theorem

AD² = AE² + ED²

AD=\sqrt{AE^2+ED^2}\\\Rightarrow AD=\sqrt{2^2+4^2}\\\Rightarrow AD=\sqrt{20}\\\Rightarrow AD=4.47\ km

Hence, the van is 4.47 km from its initial point

3 0
3 years ago
Other questions:
  • An electron that has a velocity with x component 2.4 x 106 m/s and y component 3.6 x 106 m/s moves through a uniform magnetic fi
    6·1 answer
  • an object which has a mass of 70 kg is sitting on a cliff 10 m high calculate the objects gravitational potential energy given g
    7·1 answer
  • A uniform solid disk of mass 5.00 kg and diameter 47.0 cm starts from rest and rolls without slipping down a 40.0 ∘ incline that
    13·1 answer
  • A block of mass 2.0kg resting on a smooth horizontal plane is acted upon simultaneously by two forces, 10N due to north and 10n
    6·1 answer
  • Who performed classic experiments that supported the semiconservative model of dna replication?
    8·1 answer
  • A 12,500 N alien UFO is hovering about the surface of Earth. At time , its position can be given as () = ((0.24 m/s^3)^3 + 25 m)
    10·1 answer
  • How do we know what is inside of Earth ?
    9·1 answer
  • Plsss answer this plsss answer this plsss answer this plsss answer this ​
    8·2 answers
  • How to tackle questions on resultant force​
    8·1 answer
  • A 1994 Ford Mustang is driving down a road with a constant speed of 30 31/5, The engine must
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!