1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
15

Simplify the expression 6ab + 3ab - 7ab. What is the coefficient of the simplified expression?

Mathematics
2 answers:
Bad White [126]3 years ago
8 0
Simplifying 6ab + 3ab - 7ab
so we can write it 
6ab + 3ab - 7ab = 0 ( because there is nothing on right side ) 
9ab - 7ab = 0
2ab = 0
So the coefficient of ab is 2.

Correct option is C.
loris [4]3 years ago
7 0
To simply to expression 6ab+3ab-7ab, we do:
6ab+3ab-7ab+= (Just do regular addition and subtraction if they have the same coefficent)
9ab-7ab=
2ab
So the answer is C.
You might be interested in
What even is this i don't even know
mixas84 [53]
The second one.


Hope this helps!!
5 0
3 years ago
adam prepares a meal of shrimp and brown rice. it must contain exactly 6 g of fat and 10 mg of iron. each 5oz serving of shrimp
jasenka [17]

Answer:

Adam needs 9/8 of a 5oz serving of shrimps (which equals to 5.625 oz) and 5/8 of a cup of brown rice (which is around 10 tablespoons).


Explanation:

You are given:

every serving of shrimp contains 2g of fat and 5mg of iron;

every serving of rice contains 6g of fat and 7mg of iron;

each meal should have 6g of total fat and 10mg of total iron.


You need to set a system of equation: let's call

s = quantity of shrimps

r = quantity of rice

The equation for the total fat will be: the quantity of fat in the serving of shrimps plus the quantity of fat in the serving of rice must be equal to 6g

2s + 6r = 6    (1)

Similarily:

the quantity of iron in the serving of shrimps plus the quantity of iron in the serving of rice must be equal to 10g

5s + 7r = 10     (2)


In order to solve the system, solve for s in equation (1):

s = (6-6r)/2 = 3 - 3r        (3)

Substitute in equation (2):

5(3 - 3r) + 7r = 10

and solve for r:

15 - 15r + 7r = 10

8r = 5

r = 5/8

Substitute the value of r in equation (3):

s = 3 - 3×5/8 = 9/8


Therefore Adam would need 9/8 of a 5oz serving of shrimps and 5/8 of a 1 cup of brown rice for each meal.

6 0
3 years ago
Find the remaining trigonometric ratios of θ if csc(θ) = -6 and cos(θ) is positive
VikaD [51]
Now, the cosecant of θ is -6, or namely -6/1.

however, the cosecant is really the hypotenuse/opposite, but the hypotenuse is never negative, since is just a distance unit from the center of the circle, so in the fraction -6/1, the negative must be the 1, or 6/-1 then.

we know the cosine is positive, and we know the opposite side is -1, or negative, the only happens in the IV quadrant, so θ is in the IV quadrant, now

\bf csc(\theta)=-6\implies csc(\theta)=\cfrac{\stackrel{hypotenuse}{6}}{\stackrel{opposite}{-1}}\impliedby \textit{let's find the \underline{adjacent side}}
\\\\\\
\textit{using the pythagorean theorem}\\\\
c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a
\qquad 
\begin{cases}
c=hypotenuse\\
a=adjacent\\
b=opposite\\
\end{cases}
\\\\\\
\pm\sqrt{6^2-(-1)^2}=a\implies \pm\sqrt{35}=a\implies \stackrel{IV~quadrant}{+\sqrt{35}=a}

recall that 

\bf sin(\theta)=\cfrac{opposite}{hypotenuse}
\qquad\qquad 
cos(\theta)=\cfrac{adjacent}{hypotenuse}
\\\\\\
% tangent
tan(\theta)=\cfrac{opposite}{adjacent}
\qquad \qquad 
% cotangent
cot(\theta)=\cfrac{adjacent}{opposite}
\\\\\\
% cosecant
csc(\theta)=\cfrac{hypotenuse}{opposite}
\qquad \qquad 
% secant
sec(\theta)=\cfrac{hypotenuse}{adjacent}

therefore, let's just plug that on the remaining ones,

\bf sin(\theta)=\cfrac{-1}{6}
\qquad\qquad 
cos(\theta)=\cfrac{\sqrt{35}}{6}
\\\\\\
% tangent
tan(\theta)=\cfrac{-1}{\sqrt{35}}
\qquad \qquad 
% cotangent
cot(\theta)=\cfrac{\sqrt{35}}{1}
\\\\\\
sec(\theta)=\cfrac{6}{\sqrt{35}}

now, let's rationalize the denominator on tangent and secant,

\bf tan(\theta)=\cfrac{-1}{\sqrt{35}}\implies \cfrac{-1}{\sqrt{35}}\cdot \cfrac{\sqrt{35}}{\sqrt{35}}\implies \cfrac{-\sqrt{35}}{(\sqrt{35})^2}\implies -\cfrac{\sqrt{35}}{35}
\\\\\\
sec(\theta)=\cfrac{6}{\sqrt{35}}\implies \cfrac{6}{\sqrt{35}}\cdot \cfrac{\sqrt{35}}{\sqrt{35}}\implies \cfrac{6\sqrt{35}}{(\sqrt{35})^2}\implies \cfrac{6\sqrt{35}}{35}
3 0
3 years ago
Why are there so many songs about rainbows
Radda [10]

Answer:

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Please view this imagine & help meee:(
EleoNora [17]

Answer:

20: 9t+12

21: 18x

22: 105x+9

24: 156r

25: 3x+11

26: 25.2x

28: 56a

29: 1.5n

30: 13q

Step-by-step explanation:

hope this helped

brainliest please

6 0
3 years ago
Other questions:
  • What would be the best way to use a scale model
    5·1 answer
  • How to write the quotient of a number plus 6 and 3 as a variable expression
    12·1 answer
  • The ratio of a rectangle's length to its width
    15·1 answer
  • 7. Our solutions are the
    8·1 answer
  • The perimeter of the polygon is 12 in. What is the length of side x?
    11·1 answer
  • Prove ||a+b|| ≤ ||a||+|b||​
    9·1 answer
  • Evaluate the expression pleasse :)!!! I hate my anxiety:)<br><br><br> (0.4)(−3.5)(−9)
    9·1 answer
  • What work would I do to answer this question?
    5·1 answer
  • Help me answer both pleaseeeee
    5·1 answer
  • A circular pond is to be surrounded by a fence.The radius of the pond is 3.2 m.How many meters of fence is needed to enclose the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!