ANSWER:
a) 12 cats
b) 232
c) 246
d) 14
EXPLANATION:
Given the expression for number of cats C present at time t:
![C\text{ = }\frac{12.31}{0.05+0.56^t^{}}](https://tex.z-dn.net/?f=C%5Ctext%7B%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%2B0.56%5Et%5E%7B%7D%7D)
a) To find the number of cats initially on the reserve, let t = 0
Therefore, substitute 0 for t in the equation
![\begin{gathered} C\text{ = }\frac{12.31}{0.05+0.56^0} \\ \text{ = }\frac{12.31}{0.05\text{ + 1}} \\ \text{ = }\frac{12.31}{1.05} \\ =\text{ }11.72 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20C%5Ctext%7B%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%2B0.56%5E0%7D%20%5C%5C%20%5Ctext%7B%20%20%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%5Ctext%7B%20%2B%201%7D%7D%20%5C%5C%20%5Ctext%7B%20%20%20%3D%20%7D%5Cfrac%7B12.31%7D%7B1.05%7D%20%5C%5C%20%3D%5Ctext%7B%20%7D11.72%20%5Cend%7Bgathered%7D)
Number of cats initially on the reserve are approximately 12 cats
b) C(10):
![\begin{gathered} C(10)\text{ = }\frac{12.31}{0.05+0.56^{10}}\text{ = 232.12} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20C%2810%29%5Ctext%7B%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%2B0.56%5E%7B10%7D%7D%5Ctext%7B%20%3D%20232.12%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
C(10) = 232
Here, C(10) means that C is a function of 10. This means at time = 10 years
C)Using function notation to express the number of cats present after 17 years, we have:
![C(17)\text{ = }\frac{12.31}{0.05+0.56^{17}}](https://tex.z-dn.net/?f=C%2817%29%5Ctext%7B%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%2B0.56%5E%7B17%7D%7D)
![C(17)\text{ = }\frac{12.31}{0.05+0.56^{17}}\text{ = }245.94](https://tex.z-dn.net/?f=C%2817%29%5Ctext%7B%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%2B0.56%5E%7B17%7D%7D%5Ctext%7B%20%3D%20%7D245.94)
Therefore, number of cats present after 17 years are approximately 246 cats
C(17) = 246 cats
d) In this case, first find the number of cats present in the 10th year and subtract from the number of cats present in the 17th year.
![C(10)\text{ = }\frac{12.31}{0.05+0.56^{10}}=\text{ }232.12](https://tex.z-dn.net/?f=C%2810%29%5Ctext%7B%20%3D%20%7D%5Cfrac%7B12.31%7D%7B0.05%2B0.56%5E%7B10%7D%7D%3D%5Ctext%7B%20%7D232.12)
From question C above, we know C(17) = 246
Therefore, the increase in cat population to be expected from the 10th year to the 17th year is:
C(17) - C(10) = 246 - 232 = 14 cats