Answer:

Step-by-step explanation:
The first equation is 
The second equation is 
When we graph these two equations, <em>they will meet at a point which represent the solution of the two equations</em>.
We can solve the two equations simultaneously to determine their point of intersection.
Let us substitute the second equation into the first equation to get;

Multiply through by 2 to get;

Group similar terms to obtain;

Simplify;

Divide both sides by 3;

Put
into the second equation;



Therefore the graphs of the two functions intersect at (2,3)
See graph in attachment.
Answer:
The coordinates of the endpoints of the side congruent to side EF is:
E'(-8,-4) and F'(-5,-7).
Step-by-step explanation:
<em>" when point M (h, k) is rotated about the origin O through 90° in anticlockwise direction or we can say counter clockwise. The new position of point </em><em>M (h, k) will become M' (-k, h) "</em>
We are given a trapezoid such that the vertices of trapezoid are:
E(-4,8) , F(-7,5) , G(-4,3) , H(-2,5)
Then the new coordinates after the given transformation is:
E(-4,8) → E'(-8,-4)
F(-7,5) → F'(-5,-7)
G(-4,3) → G'(-3,-4)
H(-2,5) → H'(-5,-2)
Hence the coordinates of the endpoints of the side congruent to side EF is:
E'(-8,-4) and F'(-5,-7).
- Diameter of cylinder is <u>1</u><u>4</u><u> </u><u>units.</u>
<h3><u>Explamation </u><u>:</u></h3>
<em><u>Given </u></em><em><u>:</u></em><em><u>-</u></em>
- Volume of cylinder = 245π cubic units
- Height of cylinder = 5 units
<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>Solution </u></em><em><u>:</u></em><em><u>-</u></em>
<em>Firstly </em><em>lets </em><em>calculate </em><em>radius </em><em>of </em><em>cylinder </em><em>by </em><em>using </em><em>formula </em><em>of </em><em>volume </em><em>of </em><em>cylinder,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
- Volume of cylinder = πr²h
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ 245π = π × r² × 5
<em>By </em><em>cutting </em><em>'π' </em><em>with </em><em>'π' </em><em>we </em><em>get;</em>
➸ 245 = r² × 5
➸ 245/5 = r²
➸ 49 = r²
➸ √(49) = r²
➸ √(<u>7</u><u> </u><u>×</u><u> </u><u>7</u><u>)</u> = r²
➸ 7 = r
➸ r = 7 units
- <u>Hence,</u><u> </u><u>radius </u><u>of </u><u>cylinder </u><u>is </u><u>7</u><u> </u><u>units.</u>
<em>Now </em><em>lets </em><em>calculate </em><em>its </em><em>diameter,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ Diameter = 7 × 2
➸ Diameter = 14 units
- <u>Hence,</u><u> </u><u>diameter </u><u>of </u><u>cylinder </u><u>is </u><u>1</u><u>4</u><u> </u><u>units.</u>
Than answer you looking for is I think B
The number is 35
2 tens=20
15ones=15
20+15=35