Answer:
Simplifying
(2x2 + -3x + 1)(x + -2)
Reorder the terms:
(1 + -3x + 2x2)(x + -2)
Reorder the terms:
(1 + -3x + 2x2)(-2 + x)
Multiply (1 + -3x + 2x2) * (-2 + x)
(1(-2 + x) + -3x * (-2 + x) + 2x2 * (-2 + x))
((-2 * 1 + x * 1) + -3x * (-2 + x) + 2x2 * (-2 + x))
((-2 + 1x) + -3x * (-2 + x) + 2x2 * (-2 + x))
(-2 + 1x + (-2 * -3x + x * -3x) + 2x2 * (-2 + x))
(-2 + 1x + (6x + -3x2) + 2x2 * (-2 + x))
(-2 + 1x + 6x + -3x2 + (-2 * 2x2 + x * 2x2))
(-2 + 1x + 6x + -3x2 + (-4x2 + 2x3))
Combine like terms: 1x + 6x = 7x
(-2 + 7x + -3x2 + -4x2 + 2x3)
Combine like terms: -3x2 + -4x2 = -7x2
(-2 + 7x + -7x2 + 2x3)
Step-by-step explanation:
Answer:
monomial
Step-by-step explanation:
monomial, one term
binomial two terms
trinominal three terms
3z is one term so it is a monomial
It is undefined when x=0 (y-axis), this occurs two times during one full revolution of the unit circle. Once at

or 90° and again at

or 270°.
Answer:
Number of term n = 12
Step-by-step explanation:
Given:
a1 = -2
a2 = 3
Sum = 306
Find:
Number of term n
Computation:
d = a2 - a1
d = 3 - (-2)
d = 5
Sn = n/2[2a + (n-1)d]
306 = n/2[2(-2) + (n-1)5]
612 = n[-4 + 5n -5]
5n² - 9n - 612 = 0
Number of term n = 12

Since the function

is literally defined as the reciprocal of

, any value of

will satisfy this equation.
A. All real numbers