Answer:
69.01 m
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you ...
Tan = Opposite/Adjacent
The tangent function is useful for problems like this. Let the height of the spire be represented by h. The distance (d) across the plaza from the first surveyor satisfies the relation ...
tan(50°) = (h -1.65)/d
Rearranging to solve for d, we have ...
d = (h -1.65)/tan(50°)
The distance across the plaza from the second surveyor satisfies the relation ...
tan(30°) = (101.65 -h)/d
Rearranging this, we have ...
d = (101.65 -h)/tan(30°)
Equating these expressions for d, we can solve for h.
(h -1.65)/tan(50°) = (101.65 -h)/tan(30°)
h(1/tan(50°) +1/tan(30°)) = 101.65/tan(30°) +1.65/tan(50°)
We can divide by the coefficient of h and simplify to get ...
h = (101.65·tan(50°) +1.65·tan(30°))/(tan(30°) +tan(50°))
h ≈ 69.0148 ≈ 69.01 . . . . meters
The tip of the spire is 69.01 m above the plaza.
Answer:
It's the second box.
Step-by-step explanation:
There, you are getting the most product for the cheapest.
Answer:
respect the traditions and beliefs
Answer:
P-value ≈ 0.3463
Step-by-step explanation:
Hypothesis test would be
:p=0.20
:p>0.20
We need to calculate the z-score of sample proportion and then the corresponding P-value.
z-score can be calculated as:
z=
where
- p(s) is the sample proportion of specimens yield before the theoretical point (
)
- p is the proportion assumed under null hypothesis. (0.20)
- N is the sample size (40)
Using the numbers
z=
=0.3953
and the P-value is then P(z)≈0.3463