<span>a³-b³=(a-b)(a²+ab+b²)
64x⁶ - 27
64 = 4³,
x⁶ = (x²)³
27 = 3³
</span>64x⁶ - 27 = 4³(x²)³ -3³ = (4x²)³ -3³. Now, we can use a formula where a=4x², b=3
(4x²)³ -3³ = (4x² -3)((4x²)² +4x²*3 + 3²) = (4x² -3)(16x⁴ +12x² + 9)
<span>
Answer: </span>64x⁶ - 27= (4x² -3)(16x⁴ +12x² + 9) <span>
</span>
Im thinking 10 because 10+40=50 and 10x7=70
Answer:
They the answernis 17.50 fam
Step-by-step explanation:
from the diagram, we can see that the height or line perpendicular to the parallel sides is 8.5.
likewise we can see that the parallel sides or "bases" are 24.3 and 9.7, so
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ h=8.5\\ a=24.3\\ b=9.7 \end{cases}\implies \begin{array}{llll} A=\cfrac{8.5(24.3+9.7)}{2}\\\\ A=\cfrac{8.5(34)}{2}\implies A=144.5~in^2 \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D8.5%5C%5C%20a%3D24.3%5C%5C%20b%3D9.7%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B8.5%2824.3%2B9.7%29%7D%7B2%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B8.5%2834%29%7D%7B2%7D%5Cimplies%20A%3D144.5~in%5E2%20%5Cend%7Barray%7D)
Answer: (‑(15*x))+39
Step-by-step explanation: