Answer: 1. Vinegar, used in the kitchen, is a liquid containing 3-6% acetic acid. It is used in pickles and in many food preparations.
2. Lemon and orange juice contains citric acid. Citric acid is used in the preparation of effervescent salts and as a food preservative.
3. Acids have been put to many uses in industry. Nitric acid and sulphuric acid are used in the manufacture of fertilizers, dyes, paints, drugs and explosives.
4. Sulphuric acid is used in batteries, which are used in cars, etc. Tannic acid is used in the manufacture of ink and leather.
5. Hydrochloric acid is used to make aqua regia, which is used to dissolve noble metals such as gold and platinum.
6. Sulphuric acid is used in manufacturing fertilizers such as super phosphate, ammonium sulpahte etc.
<em>V = 151 mL = 151 cm³</em>
<em>d = 0,789 g/mL = 0,789 g/cm³</em>
--------------------------------------
d = m/V
m = d×V
m = 0,789×151
<u>m = 119,139g</u>
This question requires the knowledge of density.
The density of ethyl alcohol = 789 kg m⁻³
The density of water = 1000 kg m⁻³
Density = Mass / Volume
By applying ethyl alcohol,
789 kg m⁻³ = Mass / 0.9 m³
Mass = 710.1 kg
hence the mass of 0.9 m³ ethyl alcohol is 710.1 kg.
Then by applying water,
1000 kg m⁻³ = 710.1 kg / Volume
Volume = 0.7101 m³
= 0.7 m³
hence the equal water volume is 0.7 m³
To name this Alkyne, simply count from the direction that will give the lowest starting number to appear at the beginning of the carbon triple bond.
If you were to count from the top of the chain, the position of the carbon next to the triple bond would be 4. Yet if you count from the bottom chain going left to right and above the chain, the position of the carbon next to the triple bond would be 3.
Then identify the groups that are connected off the parent chain, here we have a methyl group on carbon 2.
Thus the name would be 2 - methyl - 3 - heptyne. I believe.
Answer:

Explanation:
Although the context is not clear, let's look at the oxidation and reduction processes that will take place in a Fe/Sn system.
The problem states that anode is a bar of thin. Anode is where the process of oxidation takes place. According to the abbreviation 'OILRIG', oxidation is loss, reduction is gain. Since oxidation occurs at anode, this is where loss of electrons takes place. That said, tin loses electrons to become tin cation:

Similarly, iron is cathode. Cathode is where reduction takes place. Reduction is gain of electrons, this means iron cations gain electrons and produce iron metal:

The net equation is then:

However, this is not the case, as this is not a spontaneous reaction, as iron metal is more reactive than tin metal, and this is how the coating takes place. This implies that actually anode is iron and cathode is tin:
Actual anode half-equation:

Actual cathode half-equation:

Actual net reaction:
