Answer:
Crystallography, nanotechnology, biophotonics, condensed matter theory and solar energy.
Explanation:
Some other subjects that should be studied in college are crystallography, nanotechnology, biophotonics, condensed matter theory ,and solar energy. These may help you in the studying of a physicist.
Hope it helped brainiest plz
Answer:
noun. the composite or generally prevailing weather conditions of a region, as temperature, air pressure, humidity, precipitation, sunshine, cloudiness, and winds, throughout the year, averaged over a series of years. a region or area characterized by a given climate: to move to a warm climate.
Explanation:
Explanation:
Conjugated diene is the one that contains alternate double bonds in its structure. That means both the double bonds are separated by a single bond.
Cumulated diene is the one that contains two double bonds on a single atom. This means it has two double bonds continuously.
Isolated double-bonded compound has a single bond isolated by two to three single bonds.
Compound A: Two alkenes are joined by a sigma bond.
For example:
It is a conjugated diene.
Compound B: Two alkenes are joined by a C H 2 group.
It is a cumulative diene.
Compound C: Two alkenes are joined by C H 2 C H 2.
Then it is an isolated alkene.
Compound D: A cyclohexene has a double bond between carbons 1 and 2. Carbon 3 is an sp 2 carbon that is bonded to another s p 2 carbon with an alkyl substituent.
Hence, compound D is a conjugated diene.
Answer:
NO, they are not the same compound
Explanation:
Given that;
Compound A melts at 220.5 °C - 222.1 °C; &
Compound B melts at 221.2 °C - 223.4 °C
It is seen from above that there is little difference in the melting point of Compound A and B. This little difference can be as a result of factors associated when carrying the melting process or because different methods were employed in the establishing their melting points.
Also, we were told that when they were both mixed together , the mixture of compound A and B melts at 216.4 °C - 224.6 °C.
This statement has largely indicated that both compounds are not the same at all, because if they were, the mixture of compound A and B melting point must be identical to one of the individual compound's melting point either from compound A or from compound B.