Answer:
graph A
Step-by-step explanation:
When the cost is at 4 dollars, the feet is at 1. Hope this helps!
Answer:
x = -4, 5/2
Step-by-step explanation:
A quadratic can be solved may ways, including graphing, factoring, and the quadratic formula. You can also check possible answers by making use of the relationships between solutions and the coefficients.
__
A graph is attached. It shows the solutions to be -4 and 5/2.
__
When factored, the equation becomes ...
(2x -5)(x +4) = 0 . . . . . has solutions x=-4, x=5/2 (these make the factors zero)
__
Using the quadratic formula, the solutions of ax^2 +bx +c = 0 are found from ...
x = (-b±√(b²-4ac))/(2a)
x = (-3±√(3²-4(2)(-20))/(2(2)) = (-3±√169)/4 = {-16, +10}/4
x = {-4, 5/2}
__
For ax^2 +bx +c = 0, the solutions must satisfy ...
product of solutions is c/a = -20/2 = -10
Only the first and last choices have this product.
sum of solutions is -b/a = -3/2
Only the first choice (-4, 5/2) has this sum.
Answer:
Determine the domain and range of a logarithmic function.
Determine the x-intercept and vertical asymptote of a logarithmic function.
Identify whether a logarithmic function is increasing or decreasing and give the interval.
Identify the features of a logarithmic function that make it an inverse of an exponential function.
Graph horizontal and vertical shifts of logarithmic functions.
Graph stretches and compressions of logarithmic functions.
Graph reflections of logarithmic function
Step-by-step explanation:
Answer:
$24.11
Step-by-step explanation:
Let the cost of the present be c.
Then (3/4)c = $18.33.
To isolate (solve for) c, mult. both sides of this equation by (4/3):
(4/3)(3/4)c = (4/3)($18.33), or
c = $24.11
The total length of the ribbon used is expressed as r and is a product of the number of gifts (g) and the length of ribbon tied in each gift. This relationship may be expressed by the equation,
r = (25) x (g)