Momentum is conserved, so the sum of the separate momenta of the car and wagon is equal to the momentum of the combined system:
(1250 kg) ((36.2 <em>i</em> + 12.7 <em>j </em>) m/s) + (448 kg) ((13.8 <em>i</em> + 10.2 <em>j</em> ) m/s) = ((1250 + 448) kg) <em>v</em>
where <em>v</em> is the velocity of the system. Solve for <em>v</em> :
<em>v</em> = ((1250 kg) ((36.2 <em>i</em> + 12.7 <em>j </em>) m/s) + (448 kg) ((13.8 <em>i</em> + 10.2 <em>j</em> ) m/s)) / (1698 kg)
<em>v</em> ≈ (30.3 <em>i</em> + 12.0 <em>j</em> ) m/s
Answer:
6.4 J
Explanation:
m = mass of the bullet = 10 g = 0.010 kg
v = initial velocity of bullet before collision = 1.8 km/s = 1800 m/s
v' = final velocity of the bullet after collision = 1 km/s = 1000 m/s
M = mass of the block = 5 kg
V = initial velocity of block before collision = 0 m/s
V' = final velocity of the block after collision = ?
Using conservation of momentum
mv + MV = mv' + MV'
(0.010) (1800) + (5) (0) = (0.010) (1000) + (5) V'
V' = 1.6 m/s
Kinetic energy of the block after the collision is given as
KE = (0.5) M V'²
KE = (0.5) (5) (1.6)²
KE = 6.4 J
Her displacement would be -3 blocks
displacement = final position - initial position
Complete Question
The complete question is is shown on the first uploaded
Answer:
The elastic potential energy at point B is
The kinetic energy at point D is 
Explanation:
Looking at the given point we can observe that mechanically energy(i.e potential and kinetic energy ) is conserved and it value is 
So at point B


KE at point B is 50J
So 
Now at point D

at point D is 25J
So 
Pregunta completa:
Un barco va a una velocidad de 45 ml/h, luego el capitán ordena acelerar hasta que la velocidad hasta que la velocidad sea de 60 mll/h. si la operación dura 30 minutos.
A cual fue la aceleracion?
B qué distancia recorre?
Responder:
30 millas / hora
26.25 mi
Explicación:
Dado que :
Velocidad inicial, u = 45 mi / hr
Velocidad final, v = 60 mi / hr
Tiempo, t = 30 minutos = 30/60 = 0,5 h
Aceleración, a = cambio de velocidad con el tiempo;
a = (v - u) / t
a = (60 - 45) / 0,5
a = 15 / 0,5
a = 30 millas / h²
Recorrido de distancia, S
S = ut + 0.5at²
S = 45 (0,5) + 0,5 (30) (0,5²)
S = 22,5 + 3,75
S = 26,25 millas