Answer:
The work done is 202.50Nm
Step-by-step explanation:
Given
![F =450N](https://tex.z-dn.net/?f=F%20%3D450N)
![x_1 = 30cm](https://tex.z-dn.net/?f=x_1%20%3D%2030cm)
![x_2 = 60cm](https://tex.z-dn.net/?f=x_2%20%3D%2060cm)
Required
The work done
First, we calculate the spring constant (k)
![F = kx_1](https://tex.z-dn.net/?f=F%20%3D%20kx_1)
![450N = k *30cm](https://tex.z-dn.net/?f=450N%20%3D%20k%20%2A30cm)
![k = \frac{450N}{30cm}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B450N%7D%7B30cm%7D)
![k =15N/cm](https://tex.z-dn.net/?f=k%20%3D15N%2Fcm)
So:
![F = kx_1](https://tex.z-dn.net/?f=F%20%3D%20kx_1)
![F(x) = 15x](https://tex.z-dn.net/?f=F%28x%29%20%3D%2015x)
The work done using Hooke's law is:
![W =\int\limits^a_b {F(x)} \, dx](https://tex.z-dn.net/?f=W%20%3D%5Cint%5Climits%5Ea_b%20%7BF%28x%29%7D%20%5C%2C%20dx)
This gives:
![W =\int\limits^{60}_{30} {15x} \, dx](https://tex.z-dn.net/?f=W%20%3D%5Cint%5Climits%5E%7B60%7D_%7B30%7D%20%7B15x%7D%20%5C%2C%20dx)
Rewrite as:
![W =15\int\limits^{60}_{30} {x} \, dx](https://tex.z-dn.net/?f=W%20%3D15%5Cint%5Climits%5E%7B60%7D_%7B30%7D%20%7Bx%7D%20%5C%2C%20dx)
Integrate
![W =15 \frac{x^2}{2}|\limits^{60}_{30}](https://tex.z-dn.net/?f=W%20%3D15%20%5Cfrac%7Bx%5E2%7D%7B2%7D%7C%5Climits%5E%7B60%7D_%7B30%7D)
This gives:
![W =15 *\frac{60^2 - 30^2}{2}](https://tex.z-dn.net/?f=W%20%3D15%20%2A%5Cfrac%7B60%5E2%20-%2030%5E2%7D%7B2%7D)
![W =15 *\frac{2700}{2}](https://tex.z-dn.net/?f=W%20%3D15%20%2A%5Cfrac%7B2700%7D%7B2%7D)
![W =15 *1350](https://tex.z-dn.net/?f=W%20%3D15%20%2A1350)
![W =20250N-cm](https://tex.z-dn.net/?f=W%20%3D20250N-cm)
Convert to Nm
![W =\frac{20250Nm}{100}](https://tex.z-dn.net/?f=W%20%3D%5Cfrac%7B20250Nm%7D%7B100%7D)
![W =202.50Nm](https://tex.z-dn.net/?f=W%20%3D202.50Nm)
Answer:
sum of products expression = x₁x₂x₃' + x₁x₂'x₄ + x₁x₂x₄
Step-by-step explanation:
Given function ( f ) = x₁x₂'x₃' + x₁x₂x₄ + x₁x₂'x₃x₄'
using algebraic manipulation
f = x₁ [ x₂'x₃' + x₂x₄ + x₂'x₃x₄' ]
= x₁ [ x₂'( x₃' + x₃x₄') + x₂x₄ ]
next apply Boolean rules
a + bc = ( a + b )(a + c )
a' + a =1
hence
minimum sum-of-products expression = x₁x₂x₃' + x₁x₂'x₄ + x₁x₂x₄
<span>answer is: 1.5352484e+13</span>
The coordinates of the center of the circle is (3,5), the length of the radius is 9