Given two points

and

The distance between them is >>>
![D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}](https://tex.z-dn.net/?f=D%3D%5Csqrt%5B%5D%7B%28y_2-y_1%29%5E2%2B%28x_2-x_1%29%5E2%7D)
The points given are (Sqrt(20), Sqrt(50)) and (Sqrt(125), Sqrt(8)), so their distance is >>>
![\begin{gathered} D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2} \\ D=\sqrt[]{(\sqrt[]{8}-\sqrt[]{50})^2+(\sqrt[]{125}-\sqrt[]{20})^2} \\ D=\sqrt[]{(\sqrt8)^2-2(\sqrt[]{8})(\sqrt[]{50})+(\sqrt[]{50})^2^{}+(\sqrt[]{125})^2-2(\sqrt[]{125})(\sqrt[]{20})+(\sqrt[]{20})^2} \\ D=\sqrt[]{8-2(2\sqrt[]{2})(5\sqrt[]{2})+50+125-2(5\sqrt[]{5})(2\sqrt[]{5})+20} \\ D=\sqrt[]{8-40+50+125-100+20} \\ D=\sqrt[]{63} \\ D=3\sqrt[]{7} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%28y_2-y_1%29%5E2%2B%28x_2-x_1%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28%5Csqrt%5B%5D%7B8%7D-%5Csqrt%5B%5D%7B50%7D%29%5E2%2B%28%5Csqrt%5B%5D%7B125%7D-%5Csqrt%5B%5D%7B20%7D%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28%5Csqrt8%29%5E2-2%28%5Csqrt%5B%5D%7B8%7D%29%28%5Csqrt%5B%5D%7B50%7D%29%2B%28%5Csqrt%5B%5D%7B50%7D%29%5E2%5E%7B%7D%2B%28%5Csqrt%5B%5D%7B125%7D%29%5E2-2%28%5Csqrt%5B%5D%7B125%7D%29%28%5Csqrt%5B%5D%7B20%7D%29%2B%28%5Csqrt%5B%5D%7B20%7D%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B8-2%282%5Csqrt%5B%5D%7B2%7D%29%285%5Csqrt%5B%5D%7B2%7D%29%2B50%2B125-2%285%5Csqrt%5B%5D%7B5%7D%29%282%5Csqrt%5B%5D%7B5%7D%29%2B20%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B8-40%2B50%2B125-100%2B20%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B63%7D%20%5C%5C%20D%3D3%5Csqrt%5B%5D%7B7%7D%20%5Cend%7Bgathered%7D)
----------------------------------------------------------------------------------------------------------
The midpoint formula is >>>

Plugging in the points, we have >>>
The product is irrational. a rational number (5.5) times an irrational one (√5) is always irrational
Answer:
99
Step-by-step explanation:
Through some clever algebra, we can combine our first two equations using the fact that

We have the a² and the b² in the equation
, and we <em>almost </em>have a 2ab in the equation
. To get that 2ab, we can simply double both sides of the first equation to get
. From there, we'll add the first two equations together, giving us the summed equation

And since
, we can equivalently say that

Step-by-step explanation:

![\text{Other solution}\\\\(x^2-y^2)^2\\\\\text{use}\ a^2-b^2=(a-b)(a+b)\\\\= [(x-y)(x+y)]^2\\\\\text{use}\ (ab)^n=a^nb^n\\\\=(x-y)^2(x+y)^2](https://tex.z-dn.net/?f=%5Ctext%7BOther%20solution%7D%5C%5C%5C%5C%28x%5E2-y%5E2%29%5E2%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20a%5E2-b%5E2%3D%28a-b%29%28a%2Bb%29%5C%5C%5C%5C%3D%20%5B%28x-y%29%28x%2By%29%5D%5E2%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%28ab%29%5En%3Da%5Enb%5En%5C%5C%5C%5C%3D%28x-y%29%5E2%28x%2By%29%5E2)