Answer:
Step 1. Should be 3(x +2x) -2(x +1) +5 . . .
or . . . 3x(1 +2) -2(x +1) +5 . . .
or . . . 9x -2(x+1) +5
Step-by-step explanation:
Lisa apparently failed to realize that both terms inside the first set of parentheses have 3x as a factor. They are like terms, so could be combined directly. If Lisa really wants to factor out 3 or 3x, she could do so and then combine the remaining factors at another step.
The answer is c I hope that helps
Answer:

![\sqrt[3]{0.95} \approx 0.9833](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.9833)
![\sqrt[3]{1.1} \approx 1.0333](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.0333)
Step-by-step explanation:
Given the function: ![g(x)=\sqrt[3]{1+x}](https://tex.z-dn.net/?f=g%28x%29%3D%5Csqrt%5B3%5D%7B1%2Bx%7D)
We are to determine the linear approximation of the function g(x) at a = 0.
Linear Approximating Polynomial,
a=0
![g(0)=\sqrt[3]{1+0}=1](https://tex.z-dn.net/?f=g%280%29%3D%5Csqrt%5B3%5D%7B1%2B0%7D%3D1)

Therefore:

(b)![\sqrt[3]{0.95}= \sqrt[3]{1-0.05}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%3D%20%5Csqrt%5B3%5D%7B1-0.05%7D)
When x = - 0.05

![\sqrt[3]{0.95} \approx 0.9833](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.9833)
(c)
(b)![\sqrt[3]{1.1}= \sqrt[3]{1+0.1}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%3D%20%5Csqrt%5B3%5D%7B1%2B0.1%7D)
When x = 0.1

![\sqrt[3]{1.1} \approx 1.0333](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.0333)
Since your scale is 1ft:1.26cm, a 30-ft tall school would need to have a

cm model. Dividing this by how tall each toothpick is, you'll get:
ANSWER: The model would be 6 toothpicks tall.
To find out how many cotton swabs you'll need, we just divide 37.8 by how tall each swab is:
ANSWER: The model would be 5 cotton swabs tall.